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Abstract 

The use of color histograms for image retrieval from databases has been implemented in many 

variations since the original work of Ballard and Swain. Selecting the appropriate color space for 

similarity comparisons is an important part of a color histogram technique. This paper serves to 

introduce and evaluate the performance of a color space developed by O.D. Faugeras through the 

use of color histograms. Performance is evaluated by correlating the similarity results obtained from 

various color feature vector techniques (including color histgramming) to those gathered through a 

human perceptual test. The perceptual test required 36 human subjects to evaluate the similarity 

of 10 military aircraft images. The same 10 images were also compared via the color feature vector 

techniques. The results obtained for the Faugeras color space are compared against those of the Red, 

Green, Blue (RGB) and Hue, Saturation, Value (HSV) color spaces. While the correlation results 

for the Faugeras color space were unexpected and unfavorable, a Pearson correlation coefficient of 

0.91 was obtained for the HSV space suggesting that HSV is an excellent color space for judging color 

image similarity. A discussion of the Faugeras space's performance and future research directions 

are presented at the conclusion of the paper. 



A PERFORMANCE ANALYSIS OF THE 

FAUGERAS COLOR SPACE AS A COMPONENT 

OF COLOR HISTOGRAM-BASED IMAGE RETRIEVAL 

/.   Introduction 

This thesis addresses the problem of determining an appropriate color space representation 

of digital color images when color similarity calculations must be performed. Assessment of color 

similarity is an important element of military and commercial applications involving content-based 

image retrieval from databases. 

To evaluate the performance of a new color space in this particular problem domain, several 

different variations of a single color-based image retrieval technique are constructed. Similarity re- 

sults are obtained from the retrieval technique and then compared against results collected through 

a human experiment to assess overall performance. 

1.1    Overview 

Advancements in computer technology have provided the ability to economically store images, 

sound, and motion video in digital format. In fact, imagery has become an essential part of everyday 

business. Two examples of institutions where the importance of digital images has evolved are 

hospitals and commercial image distribution corporations. Hospitals can produce and be required 

to store as much as fifty Gigabytes of diagnostic images each day (6), while image distribution 

companies like R.R. Donnelley and Sons estimate an on-line storage capability of 100 Terabytes 

for future customer image accessibility needs (7). In addition, the United States government and 

the military in particular store enormous volumes of imagery. In fact, the government and military 

account for 35.5% of all U.S. imaging (Figure 1.1). 
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Figure 1.1    Breakdown of Imagery Use in the United States (1). 
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This rapid accumulation of digital imagery has resulted in a need to further automate the 

process of searching for and retrieving such files. In the past, multimedia retrieval has been limited 

to keyword searches based on one person's interpretation of an image's relevant content(2). This 

technique suffers from a number of flaws. First, images cannot be completely described by a listing 

of keywords. As the accuracy of the image description increases, the storage requirements also 

increase. Probably the most expensive requirement of the keyword technique is the time needed by 

humans to interpret individual images and produce the keyword listing. Finally, the use of keywords 

prevents the global accessibility of a multimedia archival (2). For example, descriptive words 

associated with an image are normally from a single language. The use of multiple languages such 

as English, German, and Japanese is a possibility but adds to the burden of storage requirements. 

Essentially, the expansion of the Internet has provided a means for international communication 

requiring the elimination of linguistic barriers. 

One solution to the problems facing digital image retrieval is to extract a reduced represen- 

tation of the image by automated means. Features like color, texture, and spatial information, 

which are used by humans to assess and remember image content, are manipulated and compared 

by methods based on human perceptions. While these new content-based retrieval systems help 

alleviate the problems introduced by keyword searches, the query abilities of such systems are still 

simplistic (8) and lack the efficiency needed to access massive archives. Improvements in retrieval 

accuracy (finding images a user wants) have been attained through the extraction of multiple image 

features. The disadvantage of using multiple features is the increase in retrieval time. One way 

to help control increases in retrieval time is by improving techniques based on individual features. 

A robust and efficient method of retrieval is color histogram intersection(9). Although color his- 

tograms do not preserve spatial orientations in images, they still provide an important way to judge 

similarity. Improvement of the color histogram technique has focused in three areas: 1) Similarity 

metrics (i.e. Euclidean distance, etc.) 2) Color Spaces and 3) Color Space Quantization. The focus 

of this research was to investigate the value of the Faugeras color space as a meaningful and effective 
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component of an image retrieval system.  The Faugeras color space is based on the physiology of 

the human visual system and follows from the work of O. D. Faugeras(lO). 

1.2 Problem Statement 

Does the Faugeras color space, when used as a component of color histogramming, help 

provide better correlation with the human perception of color image similarity than the RGB 

(Red, Green, Blue) and HSV (Hue, Saturation, Value) color spaces? 

1.3 Scope 

The scope of this thesis is limited to a comparison of the Faugeras color space with the HSV 

and RGB color spaces. This will be done in terms of their effect on the correlation between image 

similarity defined by a Euclidean distance measure and that measured through a human perceptual 

experiment. 

1-4    Assumptions 

A few assumptions had to be made in order to implement a non-uniform color quantization 

method and to consider the similarity comparison process valid. First, the database of images is 

assumed to be preestablished. Definition of the uniform and non-uniform quantization techniques 

used in this research rely on prior knowledge of the database color distribution. 

Second, a Euclidean distance is assumed to be appropriate as a similarity measure. Although 

humans do not measure similarity in such a fashion, the Faugeras space's construction was based on 

a Euclidean vector space. This allows for meaningful, mathematically tractable distance measures 

that work well for comparison purposes(ll). 

Finally, color histogram retrieval is most effective when scanning through heterogeneous image 

collections. For example, in this retrieval domain, a query for images similar to a picture of a taxi 
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cab will return a collection of images with yellow objects (hopefully some of which are images of 

taxis). The same similarity query is of little value in a homogeneous database. If all images in 

the database are of taxis, use of color to discriminate between pictures is highly ineffective since 

each image's color histogram is nearly identical. Therefore, since color histograms are the featured 

retrieval technique for this research, the database is assumed to be composed of images with a wide 

variety of colors and objects. 

1.5    Approach 

The first task of this research is to produce «-dimensional vectors that can be compared using 

the color histogram intersection method. A vector is created for each axis of the different color 

space representations of an image. Three different types of vectors are constructed. They are: 

1) a color histogram based on uniform quantization of each image's color distribution 2) a color 

histogram based on non-uniform quantization of each image's color distribution 3) a collection of 

three values representing the average of each color space plane. Using a Euclidean distance metric, 

a similarity value is then produced by comparing each of the test image feature vectors. 

A human perceptual experiment is used to assess the performance of the Faugeras color space 

in relation to the RGB and HSV color spaces. The human assessment of image color similarity 

provides the baseline against which each color space is compared. For a particular color space, if 

a high level of correlation exists between the Euclidean measurement and human evaluation, then 

that color space is considered a good mechanism for helping to determine image color similarity. 

Since the color histogram domain of content-based image retrieval attempts to abstract similarity 

of image colors to actual image similarity, finding a color space which corresponds closely to human 

perception enhances the retrieval of images with high color similarity and therefore the retrieval of 

similar images. 
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1.6    Thesis Organization 

Chapter I describes the problems and benefits of utilizing content-based techniques for the 

retrieval of digital images. One element which helps provide accurate retrieval is the use of im- 

age color. Application of a color space based on human physiology is one possibility for trying to 

improve the assessment of image similarity. In Chapter II, a brief background on efficiency issues 

related to content-based retrieval, and the technique of color histogramming is presented. Also in 

the second chapter is an overview of the human visual system, and a description of the Faugeras 

color space. Chapter III describes the experiments performed to compare the HSV, RGB, and 

Faugeras color space interpretations of image similarity with those recorded by human experimen- 

tation. In Chapters IV and V, the results of the experiment are described and conclusions and 

recommendations are presented. 
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//.   Background 

2.1    Introduction 

As discussed in Chapter I, the proliferation of digital color images has increased the need 

for their efficient storage and retrieval. Currently, there are many image retrieval techniques that 

have been either proposed or implemented. Some examples of these techniques are included in the 

QBIC(12), Photobook(13), and Virage image retrieval engines(14). These various systems make 

use of color, shape, and texture to discriminate between images. In this chapter, a subcomponent 

of such systems, color histogram intersection, is discussed in detail. 

Since images are complex and not easily represented by a single word or value, their most 

important features must be extracted. As noted in Chapter I, the first image retrieval systems 

used descriptive keywords to capture the essence of an image and describe an image's content(2). 

These words, or metadata, could be used for retrieval by utilizing a string matching search. Unfor- 

tunately, using a metadata solution is feasible only when the number of images is small (hundreds 

or thousands of images)(2, 13). Today, image databases are expanding rapidly, and use of human 

workers for image annotation is wasteful. Also, with such large databases (millions of images), it 

is hard to describe image content by a list of words. Words are not able to capture characteristics 

such as texture and complex color combinations. Preservation of image information provides the 

ability to construct powerful search queries. Many researchers and businesses realize that while 

certain metadata is essential for efficient retrieval, automated indexing systems based on image 

content are desperately needed. 

A variety of ideas have been presented that automate the process necessary to convert an 

image into a form for efficient retrieval (2, 12, 13, 14, 15, 16). Color-histogramming is one technique 

that attempts to produce simplified vectors which are representative of the original image. Each 

position in the vector represents one possible color from the image and the value contained in the 

position is a measure of how many pixels in the image are of that particular color. Image features 
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such as color provide a non-textual method for assessing similarity.  Future sections describe the 

histogramming technique and also introduce improvements that can be made to the basic algorithm. 

Because images are meant for human consumption, retrieval methods such as color histogram- 

ming are based on individual attributes (i.e., color) of the human visual system (HVS). A review 

of current content-based retrieval literature (see previous paragraph) revealed that researchers now 

combine multiple recognition characteristics of the HVS to improve retrieval performance. While 

many of the newest techniques are grounded on physiological measurements and observations of 

human vision, a method based on models of the human visual system was not found. The Faugeras 

color space (10), a model of the human color vision system, is based on human vision studies and 

physiological research (and incorporates multiple characteristics of both) and promises to be a use- 

ful mechanism for assessing similarity of images for image retrieval. The final two sections of this 

chapter provide a basic overview of the human visual system and introduce details concerning the 

Faugeras color space. 

The discussion begins with a section on indexing and indexing structures. Correct implemen- 

tation of indexing is what provides efficient retrieval and therefore requires techniques aimed at 

reducing the dimensionality of the search space. Otherwise, search time could grow exponentially 

and become infeasible for user applications. A tradeoff is always made between accurate image 

representation and efficient retrieval. The information presented in the next section is necessary to 

describe the constraints imposed by indexing. Ultimately, it is the use of indexing that determines 

a retrieval system's performance. 

2.2    Indexing 

2.2.1 Overview. The use of indexing for digital imagery has the same goals as indexing 

performed in relational databases (namely, speed and efficiency). However, images are much larger 

and are not identifiable by one unique attribute (primary key).  An image must be reduced to a 

2-2 



set of attributes that can be employed to describe its content. The process of generating those 

attributes is the focus of the Color Histogramming section. The present section is concerned with 

how the extracted vectors are used for indexing, and why the dimensionality of the attributes must 

be kept to a minimum. Only short descriptions of common indexing methods will be offered since 

these techniques are well known. Yet, it is important to understand the utility of their application 

and the restrictions placed on the format of vectors used for retrieval. 

2.2.2 Considerations. There are four main requirements a designer attempts to satisfy 

when creating an image indexing system(16). The method used should: 

• be fast, 

• be correct, 

• incur small storage overhead, and 

• be dynamic. 

For the method to be fast, it must eliminate sequential scans. Like relational databases, 

comparison with every element in the database is not practical. When the size of the image 

database is comparable to a relational database and an O(n) sequential scan is employed, the 

image database will perform slower because of the increased disk I/O and computation required to 

determine if two elements are similar. Also, Relational Database Management Systems (RDBMSs) 

search for an exact match, while image databases rarely find such a match. Instead, they look for 

similarity, which is not easily defined. Although most current image databases are not the size of 

large relational databases, their sizes are rapidly growing and, as previously stated, their comparison 

algorithms are usually slow. Since a sequential scan is impractical for relational systems, the added 

costs incurred in multimedia systems require even quicker and more efficient access methods. 

The retrieval of correct results is blurred by the designer's definition of similarity. This 

definition determines what is considered a correct response to a query.   The formal definition of 
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correctness in this domain is the returning of all qualifying objects without any misses. From this 

interpretation, false positives are acceptable, yet each design strives to minimize their presence 

since they have an effect on total response time. 

Computer resource competition requires that space overhead be kept to a minimum. Most 

computer systems support more than just a data management system. If the performance a new 

system presents does not outweigh the increase in overhead, users will find a system that more 

appropriately fits their needs. 

Finally, the method must be dynamic. Again, this may be dependent on the application 

domain, but inserts, deletes, and updates will usually need to be performed in an efficient manner. 

If the index is applied to a static collection of images such as a CD-ROM, this requirement will not 

be as important. 

Since there are multiple requirements that need to be satisfied simultaneously, tradeoffs must 

be made between each to optimize performance. The dimensionality of vectors used for indexing 

(e.g. number of attributes) has the most profound effect on performance. This has been referred 

to as 'the dimensionality curse' in (16). As their size grows, the vector more accurately describes 

the image but increases overhead and slows look-up time. In fact, the quad tree and grid file, 

two common multidimensional index structures, have exponential scaleup for look-up time as di- 

mensionality increases(17). A more efficient structure, the R-tree, is based on Minimum Bounding 

Rectangles(18). The R-tree and variants like the R+ and R* have been successfully tested and 

used for 20-30 dimension address spaces(16). An additional structure that has showed promising 

results was the SS-tree(19). 

In the image retrieval domain, performance of indexing structures (in terms of retrieval time) 

is directly related to the size of the vector representing a given image. As was described, there 

are a number of reasons to restrict the size of this vector, the most important of these being time 
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constraints.   These restrictions are important to keep in mind as vector extraction methods are 

presented. 

2.3    Color Histograms 

2.3.1 Overview. Color-Histograms are one way of condensing color image information 

into a more compact form. This compact form is usually referred to as a feature vector. After 

providing a definition for feature vectors, this section describes how the basic algorithm produces 

the vector and also introduces some techniques for improving efficiency and performance. 

2.3.2 Feature Vectors. For efficient comparison purposes, a feature vector should be 

derived from an image (Figure 2.1). A feature vector is a representation of an image which carries 

less information, but allows very fast similarity comparisons (usually based on only one attribute - 

i.e., color). Figure 2.1 shows a database of images and feature vectors. As shown in this figure, the 

submission of a query image results in its conversion to a feature vector. This new form can easily 

be compared against all other vectors in the database. Any image whose feature vector is considered 

highly similar1 to the query image's feature vector is returned as a query result. Describing what a 

feature vector is and how it is derived provides a baseline for understanding content-based retrieval. 

A feature vector is simply a mathematical representation of image attributes in some n- 

dimensional vector space. The most common attributes used to describe an image are color, shape, 

texture, and relative position of objects(12, 13, 14). The vector size can increase in two ways. The 

most obvious way is to add more attributes. This extends the vector size by some arbitrary length 

which is dependent on the type of attribute (e.g., definition of a color attribute may only require 

a 4-byte block of memory while a texture attribute may consume 12-bytes of memory). A second 

case is when one attribute cannot be represented by a single number. A good example of this is 

spatial information (two or three dimensions - like a square/sphere). A point in three dimensional 

'The interpretation for 'highly similar' is different for each retreival system. 
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Figure 2.1     Storage of feature vectors with their corresponding image to allow quick comparisons 
with query images. 
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space can not be delineated by one number. It requires another vector whose size determines the 

length of each attribute. 

Intuitively, the larger the vector, the more accurate the representation of the image. Unfor- 

tunately, a comparison of larger vectors usually results in slower data access. The use of domain 

specific comparison functions for checking similarity between images and increases in vector di- 

mensionality result in adverse effects on search time. Figure 2.2 shows a basic model for image 

retrieval. There are two methods that attempt to resolve the problems inherent with content-based 

image retrieval. Developers can either find new indexing structures that allow efficient access to 

high-dimension feature vectors, or find new ways to extract a minimal amount of information that 

accurately describes the most important attributes of an image. Work involving indexing struc- 

tures is referenced in the previous section. The rest of this section reviews color histogram-based 

methods for extracting minimal vectors that maximally describe an image. 

Image 
Scanner Feature 

Extraction 
Image 

Database Input 

Datab ase Creation 
/ i 

Query 

Datab ase Retrieval 
\ < 

Retrieved 
Scanner Feature 

Extraction 
Matching 

Image Images 

Figure 2.2    A model for content-based retrieval (2). 

2.3.3 Construction and Use of a Color Histogram. Use of histograms for retrieval based 

on color similarities is a common strategy derived from the original work clone by Ballard and 

Swain(9). Many improvements to this technique have been suggested (20, 21), a few of which are 

described in section 2.3.4. The example used here was presented in (20) and uses the RGB color 

space. 
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n partitions (color shades) possible in each color plane 

Figure 2.3    Three-Dimensional representation of the RGB color space. 

The first step in constructing a color histogram is to determine the color space in which the 

image was encoded. With the knowledge of the three primary colors used to define the color space 

(in this case RGB), each axis (see Figure 2.3) of the space must be discretized (quantized) into n 

bins. This allows n variations of each primary color and n3 total color combinations. Images with 

a 24-bit color capability result in Red, Green and Blue axes of the RGB space which each allow 

256 bins. Although the high number of available colors is ideal for representing real world imagery, 

comparison of two such feature vectors is extremely slow. If n is picked to be a more modest value 

of 16, only 4096 total colors (or bins) are allowed. Fortunately, a reduced color set not only provides 

more efficient comparison, Ballard and Swain showed that very few color shades are necessary to 

maintain accurate retrieval(9). This is due to the fact that color images tend to have regions of 

similar colors (the green of grass, or the blue of a lake). 

The histogram of the image is a vector (6j, 62, •••, K) where each 6, holds the number of pixels 

from the image that correspond to that bin color. There are two ways to vectorize each image. 

Either a vector of length 4096 is used for retrieval (combination of all axes), or the original three 

vectors of length 16 (representing the color shades on each axis of the color space) are compared 

against each other individually. In the later case, three color histograms (one for each of the different 

color planes) would be produced. For example, the three histograms (ri,r2,..., J'i6), (ffi,</2, ••-.ffis), 
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and (bi.,b2,...,bie) could be used to represent an image in terms of the R, G, and B axes. The 

corresponding color axis vectors are then compared to assess similarity. The results for each axis 

are combined to produce an overall similarity measure. Both methods have been implemented 

successfully. Quantization techniques necessary to transform images with 256 bins per axis to n 

bins per axis (where n < 256) are presented in section 2.3.4. A feature vector2 has now been 

constructed. 

When retrieval is performed, a comparison is needed to determine if two images are similar. 

One simple metric is to compare the number of pixels in each image's corresponding histogram bins 

(4096 bins in the example presented above). The general similarity measure (linear) presented in 

(20) is: 

n 

d(I, ff) = £ | i, - A, | (2.1) 
(=i 

where d is a distance function that compares the query image / to the internally stored image H. 

Lowercase i and h represent the value (number of pixels of that color) stored in the /th bin for 

the respective image. If a similar number of pixels are found in corresponding bins (for I and H), 

the images are considered similar.  This simple distance function is useful for minimizing search 

time but sometimes falters on search result accuracy. Accuracy of a similarity metric is normally 

defined by a human's perception of the correlation between two images' color distributions.  Our 

current inability to construct a complete model of how humans define similarity (physiologically) 

has resulted in the use of methods like Eq 2.1, which crudely approximate human perception, 

yet provide excellent performance (in terms of comparison time). The following sections describe 

techniques for improving accuracy while trying to maintain or reduce the required search time. 

2In this case the feature vector is a color histogram 
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2.3.4 Methods for Improving Color Histogramming. This section contains background 

on the concepts that make color histogram intersection possible, and presents some examples of 

how retrieval accuracy can be improved. As stated in the previous section, the importance of 

minimizing access time requires that accuracy improvements maintain the previous level of access 

time performance. 

2.3.4-1 Similarity Metrics. Similarity measures are a basic component of an image 

retrieval system and can be categorized into three groups: 1) metric measures 2) set-theoretic based 

measures, and 3) signal detection theory based measures. These groups can be further subdivided 

into measures that use crisp and fuzzy logic (22). Since algorithms in this research do not make use 

of the second and third categories, only crisp logic metric measures are discussed in this section. 

The other measures are briefly presented in (22). 

Metric-based measures are frequently used to determine the color-content-based similarity 

between two n-dimensional feature vectors produced by color histogramming. Similarity of the 

images is determined by the distance between vectors. A small distance signifies high similarity 

while larger distances signify dissimilarity. Three measures are commonly used: 

n 

dr(x,y) = lJ2\*i-yi\r]1/r,r>l (2.2) 
«=i 

doo(ar,2/) = max \ xt - y{ | (2.3) 

where r=l in equation 2.2 produces the city-block method, r=2 produces the Euclidean metric, 

and equation 2.3 is the dominance metric (22). The city-block method was used in the example of 

the previous section. 

The Euclidean algorithm is used for image retrieval in this research. It was chosen for its 

mathematical tractability, and because colors in the Faugeras color space are perceptual unit dis- 

tances from each other. The perceptual unit distance property of the Faugeras space allows metrics 
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based on distance to be used as a more accurate measure of similarity. 
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Figure 2.4    Eight bin partition of a single color space axis   (3). 

Although use of the Euclidean, city-block, and dominance methods may work adequately in 

most situations, simply comparing corresponding color bins usually limits retrieval performance 

since the distance metric d in equation 2.1 does not account for bins that are in close proximity 

to the current bin (perceptually similar colors - various shades of same color).  Figure 2.4 shows 
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an example of two color histograms. The values in each bin represent the percentage of pixels in 

an image which correspond to that bin color (each bin represents one of the possible color shades 

defined by a color space). Since simple metrics such as equations 2.1 and 2.2 do not account for 

perceptually similar colors, the two images represented by the histograms are considered complete 

opposites. This is because the histograms are compared bin by bin. If the images do not have 

any color shades in common they are judged as dissimilar. Systems have solved this problem by 

introducing color similarity matrices. While such matrices are important for retrieval accuracy, 

they are not used in this research3. An introduction to color similarity matrices is given in (3). 

2.3.4-2 Color Quantization Schemes. An integral component of color histogram- 

ming is color space quantization (4, 23, 24). Quantization is necessary for reducing the size of the 

feature vector (color histogram). In the current context, quantization is the process of dividing 

a color space into subsections (also called bins), thereby reducing the number of available colors 

an image pixel can be described by. Each bin4 is associated with a new output color which is an 

approximation of the original colors contained within that range. For example, if the Blue axis of 

the RGB color space was reduced from 40 bins (or colors) to 25 bins through quantization, fifteen 

fewer shades of blue would now exist for the definition of pixel color. The fifteen shades of blue 

that are lost must now be approximated by the 25 shades of blue that remain. In terms of color 

histograms, the vector (61,62,...,640) now becomes (6i, 62, •••,^25). After transforming the original 

pixel colors to the quantized pixel colors, a histogram is assembled in the same manner described 

in section 2.3.3. 

As stated in section 2.2.2, feature vector length has a dramatic effect on access time. With 

color histograms, the size of the feature vector is determined by the number of bins chosen for 

quantization. Experiments performed in (21), which make use of known human color sensitivities, 

3Accounting for adjacent bin similarity was disregarded since the inclusion or exclusion of a similarity matrix 
affects each color space equally. 

4 A bin defines a range of pixel intensity values from the original color space. 
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are necessary to determine an appropriate allocation of bin sizes for each color space axis. For 

example, humans are more sensitive to variations in hue, so the hue axis of the color space should 

be sampled more finely(21). Such tests of feature vector size provide a mechanism for optimizing 

the ratio of access time versus retrieval accuracy. 

Improving accuracy as the length of the feature vector shrinks can be accomplished by selec- 

tion of an appropriate quantization scheme for the given color space. The example presented in 

section 2.3.3 used a uniform quantization scheme. To quantize uniformly, the range of pixel values 

contained in an image (for an axis of the space) is computed and then divided by the number of 

desired bins. An equal range of pixel values fall within each calculated bin. Some color spaces, 

especially those based on color opponency5, do not have pixel intensity values which are distributed 

uniformly. Use of a uniform scheme in color opponent spaces hinders the construction of unique 

feature vectors. Instead, schemes like the Lloyd I (23) method are necessary because they divide 

the color space into a specified number of subspaces such that the resulting quantization error6 is 

minimized (21). The most common measure of quantization error is mean square error because 

of its mathematical tractability. The proper distribution of colors (minimizing mean square error) 

promotes better color matching while providing a better chance for the creation of unique feature 

vectors. 

2.3.4-3 Color Spaces. When retrieving color imagery from a database by using color 

histograms, the choice of color space for similarity comparisons is extremely important(26, 27). As 

pointed out in section 2.3.4.2, choice of color space may determine the quantization scheme. For 

accurate retrieval, color representations (color spaces) must correlate well with human interpreta- 

tions of color similarity. Therefore, spaces formulated from human perceptual testing make better 

5Color Opponency is a theory based on study of the Lateral Geniculate Nucleus (LGN) that describes why humans 
can see red-blue shades of color but never red-green shades. The LGN, which is a structure of the brain, is thought 
to convert signals carried by the optic nerve into a brightness channel and two color opponent channels(25). 

Quantization error is  the  error caused  by  reducing the  number of colors  available for  image  display or 
manipulation(4). 
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candidates for improving color similarity-based retrieval accuracy. The following paragraphs out- 

line the evolution of color spaces. Although standard color space schemes must be used for image 

display, more complicated, human perceptually based spaces are better choices when determining 

color similarity. 

For computer users, most monitors implement the Red/Green/Blue (RGB) color system, and 

therefore digital imagery formats are based on the RGB color space. Yet, RGB's only connection 

to the end user (humans viewing the image) is that the color definition of any pixel contained in 

an image is a product of three values (see section 2.4.2). For 24-bit color systems, color values can 

range from zero to 255 and specify the amounts of red, green, and blue that are contained in each 

pixel (e.g. R=255, B=0, G=0 would be a definition for red). Although the system is convenient, 

it does not correlate well with human color perception. For example, a unit change in any of the 

color planes may not be perceptible by a human. This is a hindrance for determining similarity, 

but provides a simple solution for color display on output devices. 

Fortunately, making a determination of similarity does not have to be derived from the color 

representation of the displayed image. Spaces based on human color perception can be and are used 

for similarity calculations, while the efficiency of RGB is still utilized for image display. Perceptual 

color spaces attempt to extract knowledge pertinent to the human definition of color similarity and 

eliminate any information which is extraneous to the task. As in the example above, creating a 

color space with unit changes that are perceptible by humans is important because a space that 

does not have that quality carries information unnecessary for a Euclidean similarity comparison. 

Since a Euclidean metric is commonly employed for comparisons, use of such spaces is an important 

consideration. Ideally, an appropriately designed color space only contains characteristics of color 

that shape a human's opinion of color similarity. 

Because of a need to tune image color representation with human perception, new color spaces 

were researched and are now used for performing similarity calculations.  One color space derived 
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from physically measured responses to color (by humans) is the CIE XYZ7(26). Although use of 

the CIE XYZ space is convenient, it lacks the property of perceptual uniformity - a perceptible 

change in color must correspond to a unit change in the values that define the space (5). This 

prevents the accurate use of distance metrics like those described in section 2.3.4.1. 

Another color space known as the Munsell color system is a result of studies performed 

on humans to determine perceptual color changes(5). Munsell differs from CIE XYZ in that the 

measurements were gathered psychophysically (human interpretation) versus physiologically (actual 

physical measurements) (5). Humans were asked to give judgments of perceptual color changes 

and the results were used to construct the space. Yet, while distance metrics became better 

similarity measures, the arrangement of the space did not agree with measurements in CIE XYZ. 

The separation of physiological and psychophysical results for constructing color spaces finally 

merged with the creation of CIE LAB8(26). Yet, while CIE LAB is yet a better color space for 

testing similarity it still does not incorporate many observed (or even theorized) features of the 

Human Visual System (HVS). Incorporation of these new features (like the one discussed in the 

next paragraph) enables the definition of a more complete color space (as judged by the HVS), and 

should provide more accurate color image retrieval. 

Currently, with advances in the knowledge of how the human visual system encodes color 

information, sophisticated models of human vision have been constructed (for an overview see (5)). 

Newer color space implementations mimic the color opponency theory and incorporate spatial as 

well as light sensitivities of the HVS. Color opponency researchers believe that humans convert 

color information into two chrominance channels (Red-Green and Blue-Yellow) and a brightness 

channel (see example in section 2.4.3)(25). Spatial and light sensitivities of the HVS are modeled 

through a combination of functions and filters.   Since only minimal amounts of image retrieval 

' CIE is an abbreviation for the Commission Internationale de L'Eclairage. They are an international color 
standards committee and the XYZ was a color space derived from physically measured responses of humans 

8CIE LAB is a perceptually uniform color space designed to correlate human judgment of color similarity with a 
Euclidean metric's evaluation of similarity. The L, A, and B represent the three separate axes that define the color 
space. 
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research have been accomplished for these new color spaces, additional research may prove that 

retrieval performance (similarity based on human perceptions) can benefit from the use of color 

spaces which are based on more complete models of the human visual system. 

2.3.5 Summary. Many improvements have been made to the original color histogram- 

ming techniques described by Ballard and Swain. Manipulation of similarity metrics, quantization 

schemes, and color spaces are just samples of the many proposed improvements. The lack of re- 

search with respect to color spaces generated from advanced HVS models provides an interesting 

avenue for further study. 

Since retrieval is initiated by humans, representations of the information contained in an 

image may be processed better if done in a manner similar to the human visual system. In some 

yet unknown way, our internal representation of imagery is used to recognize the world around us. 

This research analyzes the affects of incorporating color HVS models into a content-based retrieval 

system. Color spaces derived from such models may provide better color similarity matches. 

2.4    Human Visual System 

2.4-1 Overview. Image storage and retrieval issues will continue to be important because 

of the usefulness of images to humans. Also, the utility of images as a viable information storage 

media is rapidly expanding as storage capacities become increasingly more cost effective. A picture 

is another method by which people can communicate more effectively. Amazingly, humans can 

recognize, interpret and understand the information contained in an image almost instantaneously. 

The capabilities of our visual system would be a desirable component of the ultimate image retrieval 

system. Unfortunately, the visual process is not completely understood and the computations 

and transformations made in the brain are not likely to ever be feasible on modern or future 

computing devices. Yet, some parts of the HVS are well understood and have been used in many 

application domains (e.g., image fusion(28), breast cancer detection).   This section will focus on 
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a basic description of the HVS. This description includes examples of how scientists believe the 

HVS encodes, represents, and interprets images. The limitations of physical eye components, and 

a description of the extent of modern research will be included for completeness. 

2.4-2 Image Encoding. The initial encoding phase of the human visual system involves 

the lens, ocular fluid and retina. This phase is where most limitations of image representation are 

introduced. A brief discussion illustrates the mechanics of the encoding phase. 
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Figure 2.5    Layout of the Human Eye   (4). 

When light enters the eye, it is focused by the lens onto the retina (Figure 2.5). The intro- 

duction of blur by the lens is the first noted limitation of the HVS. In fact, this blur is so corrupting 

that Wandell(25) remarks that no person would even consider purchasing a camera with such poor 

optics. The human visual system sacrifices a high degree of optical accuracy in order to provide 

better adaptability. 

After the light reaches the retina, only a very small area is capable of substantial visual 

acuity.   This area, named the fovea, is most densely packed with light receptors.   The fovea's 
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limited size restricts the amount of information that can be received. Therefore, only a subset of 

our surroundings can be examined (at a high resolution) at any instant in time. 

Finally, there are only three types of receptors to encode the large bandwidth of wavelengths 

we consider visible light(29). Since there are only three color receptors on the retina, all colors 

are a combination of these three inputs9. Another phenomena of light absorption is the nonlinear 

response of the eye to increases in external light intensity(10). This phenomena occurs as the 

light incident on the retina is converted to a photocurrent (signal) used by the brain for image 

interpretation. When modeling the visual system, a nonlinear function is normally injected to 

approximate the nonlinear conversion that takes place between the retina and optic nerve (Figure 

2.5). 

Despite the limited amount of information encoded by this phase, it is enough for us to 

interpret the visible world. Image encoding is the most researched and best understood compo- 

nent of our vision. The relatively limited information provided by the encoding phase for image 

interpretation suggests that current computer techniques (which rely on very limited amounts of 

information) for image recognition or for assessing image similarity should be comparable to that 

of humans. Since operation of the encoding phase is well understood, researchers are now focusing 

on how restrictive, skewed inputs from the retina are transformed and interpreted. 

2.4-3 Image Representation. As information provided by encoding proceeds through the 

optic nerves, it is converted in unknown (although highly theorized) ways before interpretation(25). 

The lack of information provided by encoding denotes a possibility that a human's internal repre- 

sentation of the external world greatly enhances our ability to judge attributes such as similarity. 

When better understood, mimicking these cortical transformations may provide more efficient and 

robust retrieval algorithms. 

9The discovery of three color receptors is attributed to Young and Helmholtz and is therefore known as the 
Young-Helmholtz Tri-Chromatic Theory of color vision. 

2-18 



Transformations of the encoded signals take place in the visual pathways on their way to 

various parts of the brain. One focus of modern research is to understand of how these transforma- 

tions affect image representation(25). Many theories have been introduced and researched, but no 

current model is considered to be the 'correct' model of the HVS. Many of the recent theories are 

included in human visual system models. The color opponency theory, which was introduced in an 

earlier section, is normally included in most modern HVS models. The theory of Color-opponency 

states that two chrominance channels and a brightness channel are derived from the three varieties 

of retinal receptor cells. This process occurs in the lateral geniculate nucleus (LGN) and results in 

a more efficient way to transport information from the retina to the visual cortex (25). Although 

opponent signals have been measured in the visual pathway, only neurons that seem to allow color 

transmission have been found. There is no clearly identified group of cells that transmit brightness 

information(25). 

Multiple transformations are thought to occur in the visual pathways. The idea of color oppo- 

nency is just one theory that has been presented to explain how light entering the eye is processed 

for interpretation by various parts of the brain. When transformations like color opponency are 

better understood, additional improvements in image retrieval may be realized. 

2.4-4 Image Interpretation. Even after the encoded information has been transformed, 

the resulting retinal image is often ambiguous. Correct interpretation of the inputs is usually 

based on assumptions we have learned about the world around us. For example, hard objects can 

not pass through one another, not all types of motion are equally likely, and we live in a three- 

dimensional world (25). Compututational methods for assessing similarity (like Euclidean distance) 

of images or detecting objects within a picture attempt to mimic the interpretations of the human 

mind. Although the least understood, the ability to define human perception will continue to be 

explored because of the benefits that new knowledge can provide for applications like database 

image retrieval. 
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2.5    Faugeras Color Space 

2.5.1 Introduction. Previous sections of this chapter introduce the current foundations 

and limitations of color histogram-based image retrieval. To better understand how humans per- 

ceive and interpret images, the previous section provides a summary of the human visual system. 

Although computer vision research has become an integral part of image retrieval, use of models 

that mimic the human color visual system have not been explored for use in an information retrieval 

system. In this section, one such color HVS model is introduced. It is through this model that 

the Faugeras color space is derived. The Faugeras space provides the catalyst for the experiments 

outlined in Chapter 3. 

2.5.2 Assumptions. Two assumptions were made when implementing the Faugeras model 

used in this research. First, the image must already be provided in a defined tri-stimulus space. 

In this case, the RGB color space was used. Second, any filtering normally performed in the HVS 

before the LGN color transformation stage was extracted and grouped as one filtering mechanism 

(contrast sensitivity function (CSF)). Justification for these assumptions can be found in (5) since 

the Faugeras model used in this research was originally constructed by Captain Curtis Martin as 

part of his dissertation. 

2.5.3 Faugeras HVS Model. There are four main stages (or transformations) that the 

Faugeras model of human color vision accounts for(10). These stages, which are presented in the 

following order, include the retina color transform stage, a non-linearity stage, an LGN transform, 

and the CSF filters. Figure 2.6 illustrates how the model of human color vision was constructed 

and identifies the various stages to be discussed. 

The color transform performed in the retina is represented by equation 2.4 (5). 
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Figure 2.6    Components of the Faugeras Color HVS Model (5). 
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Since the input was assumed to be in terms of RGB coordinates, a linear transformation can 

be performed. The transform matrix of equation 2.4 represents block U in Figure 2.6. The values 

of U are a direct result of physical measurements of the retinal receptors' (L,M and S) reactions to 

red, green and blue light (5). 

Next, a non-linear function is applied to the output of the retinal transform. As noted in 

section 2.4.2, the human eye responds nonlinearly to increases in light intensity. While not an 

exact match, the logarithmic function provides a reasonable approximation and is computationally 

simple. 

The production of color opponent channels occurs in the LGN transformation. The signals 

from the log function (L*,M*,S*) are multiplied by the matrix defined in equation 2.5. 

A 

Ci 

c2 

13.8312 8.3394 0.4294 

64 -64 0 

10     0   -10 

L* 

M* 

S* 

(2.5) 

Like equation 2.4, equation 2.5 was derived from psychophysically measured data. The out- 

puts represent an achromatic channel, A, and two chromatic channels, Cl and C2. The A channel 

corresponds to the human perception of brightness while Cl and C2 correspond to channels con- 

taining pairs of color difference signals. In the Faugeras model, the Cl channel is composed of a 

Red-Green difference signal, while the C2 channel is based on the difference of a Blue and Yellow 

signal. The parameters of the color channels were fixed based on color change detection experi- 

ments. Colors that are just noticeably different (as decided by human subjects) are unit distances 
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apart. This provides a color space that conforms to an earlier definition of perceptual uniformity 

contained in section 2.3.4.3 (5). 

Finally, a filtering stage (CSF) is applied to the A, Cl and C2 channels. These filters account 

for contrast and blurring effects of the HVS. In an image, contrast is a measure of differences in 

brightness. The application of a specific contrast function is based on studies of human sensitivity 

to variations in contrast. The functions used in this model are from Captain Curtis Martin's 

dissertation(5). They are a result of research by Mannos and Sakrison. The mathematical definition 

of the filters can be found in (5). 

2.5.4 Limitations of Faugeras Model. There are a few qualities of the Faugeras model 

that cause difficulties for application in image retrieval. First, the resulting distribution of color 

and brightness information is Laplacian. Although this is consistent with observations of human 

perception, quantization of such distributions is difficult. Each image quantizes differently in order 

to minimize squared error10 since a non-uniform quantization is performed based on the distribution 

of the image being analyzed. This prevents the bin by bin comparison normally performed when 

implementing color histogram intersection. Bin definitions for individual images are not congruent. 

A partial solution to the problem is to quantize based on a distribution of the entire database 

(21). An overall template can now be derived for application to each individual image. The 

difficulty of such a solution is that all images of the database must be present in order to construct 

an overall distribution. Yet, with a large enough database, any images that are added or removed 

will have minimal effect on the color composition of the database. 

Second, even though color opponency has been well researched, the theory has not been 

completely validated. As stated in section 2.4.3, difference signals are transmitted from the LGN 

to various parts of the brain, but cells which convey brightness information have yet to be discovered. 

10Again, minimization of squared quantization error corresponds to selecting the shade of color which best ap- 
proximates a subset of pixel colors within an image. 
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2.5.5 Benefits of Using Faugeras Color Space. Although the benefits of the Faugeras color 

space have been noted throughout the chapter, this section provides a synopsis of the space's most 

important features. First, the space is perceptually uniform. Unit distances correspond to just 

perceptible changes in color and therefore metrics like Euclidean distance become more accurate 

evaluations of similarity. 

Next, conversion from RGB coordinates to the Faugeras space is straightforward. This is 

convenient due to the commonality of RGB formats. Any RGB image can have a feature vector 

constructed from the Faugeras space. 

Finally, the HVS model used to construct the Faugeras space accounts for human contrast 

sensitivities. As previously explained, contrast sensitivity functions emphasize or deemphasize 

differences in color (or light levels). Disposing of image features that are irrelevant to image 

evaluation is as important as discovering features which correspond well to human perception. 

2.6    Summary 

This chapter provides a background of knowledge that helps to support and explain the design 

of experiments and procedures carried out in Chapter III. Similarity measurements collected from 

different implementations of the color histogram intersection method provide a basis for comparing 

the performance of various color spaces to results obtained from human subjects. The Faugeras 

color space, which is based on human physiology, has been introduced and is analyzed in Chapter 

III with the histogram intersection method to determine its usefulness for assessing perceptual 

similarity of color images. 
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III.   Methodology 

3.1    Introduction 

In this chapter, the Faugeras color space, which is discussed at the conclusion of Chapter 

II, is investigated as a method for improving color histogram retrieval. Retrieval improvement is 

based on a comparison of computer image similarity outputs to results obtained through a human 

perceptual test. The chapter begins with a description of the imagery, hardware, and software used 

for testing. Next, the methods for generating a computer-based similarity measure of two images 

are presented. In conclusion, the procedure for collecting human evaluations in order to rate the 

performance of the Faugeras color space is given. 

3.2    Setup 

The framework of Chapter III is based on experimentation performed in (30). In order 

to compare color similarity, a collection of digital color images is needed in order to replace the 

collection of animal forms used in (30) to test shape similarity. An appropriate data set was found 

on two Corel© CDROMs. The images contained on these CDs are a mixture of various military 

aircraft saved in a 24 bit Corel PCD format. From the 200 images available, 50 were chosen for 

their wide variations in color content since this was the feature to be used for similarity evaluation 

(by both the computer and humans). The 50 images were converted to a TIFF format using the 

UNIX convert function and placed in a predetermined subdirectory. To satisfy a requirement that 

the images be square, ImageMagick© (image manipulation software) was used to crop the images 

to their final form. When complete, the small database contained 50 128x128 pixel images stored 

in a 24-bit TIFF format. Although the database images were originally 256x256, a preliminary 

experiment for the perceptual test found that subjects preferred to judge similarity of smaller 

images. An image size of 128x128 was the result of that inquiry. In accordance with work done in 
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(30), ten test images were chosen for comparison by the computer algorithms and human subjects. 

The images were selected for their wide variety of hues including blues, reds, greens, and yellows. 

During testing and experimentation, a Sun Sparc 20 with a 24-bit graphics card was utilized. 

The Matlab^ simulation environment was used for the computer tests and presentation of the 

perceptual test. Any necessary image manipulation was performed with the aid of the ImageMagick 

software package. All relevant Matlab code for the computer tests is contained in Appendix C, and 

code pertaining to the perceptual experiment can be found in Appendix B. 

3.3    Computer Histogram Intersection 

The color-histogramming technique described in Chapter II is the basis for the algorithms 

constructed to evaluate the Faugeras color space. This section illustrates how the necessary color 

space transformations are derived, how three different types of feature vectors are generated, and 

how the resulting feature vectors are compared. After the composition of the color-histogramming 

technique has been explained, a description of how the results collected from this procedure are 

used for analysis is presented. 

3.3.1 Color Space Transformation. For comparison purposes, three color space repre- 

sentations of the data are employed. In addition to the Faugeras color space, the RGB and Hue, 

Saturation, and Value (HSV)1 spaces are also evaluated. The RGB color space is included because 

of the predominance of its use in theoretical work. The HSV space is similar to the Munsell color 

space described in section 2.3.4.3. The separation of hue, saturation and value distinguishes HSV 

from both RGB and Faugeras, and thereby provides a third distinct test space.   Because of ini- 

The HSV color space is based on the human perceptual properties of Hue, Saturation, and Value. Hue represents 
the basic colors of the visible light spectrum and is designated by an angular degree reading between 0 and 360 degrees 
(Where cyan is at 180 degrees, blue is at 240 degrees, and Magenta is at 300 degrees.) Saturation describes the 
vividness of a color. The value of saturation can range from 0 to 1 with values near one corresponding to complete 
saturation. Complete saturation of a color produces a pure spectral color, while low levels of saturation result in 
the perception of gray. Value represents the brightness of a color. The numerical representation of Value can also 
range from 0 to 1, with numbers close to 0 corresponding to darkness, while numbers close to 1 signify high levels of 
brightness (26). 
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tial test results, a fourth space was also included for comparisons. Elimination of the CSF filters 

described in section 2.5.3 from the Faugeras HVS model allows for the construction of the fourth 

color space. In the rest of the discussion, the two Faugeras spaces are referred to as the Faugeras 

(without CSF) and the Faugeras (with CSF) color spaces. The Faugeras (with CSF) space is de- 

rived from the original Faugeras HVS model, and the Faugeras (without CSF) space is the Faugeras 

HVS model without application of the CSF function. 

The code used to perform the transformations from RGB to HSV and RGB to Faugeras is 

contained in Appendix A. Both the HSV and Faugeras color spaces are derived from an image based 

on RGB values. To obtain the RGB values of an image, the Matlab TIFFREAD function from 

the image processing toolbox is used. Once the transformations are accomplished and the data is 

normalized using equation 3.1, the new color space data for each image is ready to be converted to 

feature vectors. To normalize, fi and a are derived from each of the color spaces. The value of /i 

is the mean of all data contained in the database for a particular color space plane. The standard 

deviation for the same collection of data is represented by a. 

datapoint - ß 
new-datapotnt =   (3-1) 

3.3.2 Generation of Feature Vectors. In this research, three feature vector schemes are 

used to compare color space performance. The schemes are based on: 1) 20 bin-per-axis uniform 

quantization of each color space 2) a 20 bin-per-axis non-uniform quantization of each color space 

based on the Lloyd I algorithm, and 3) an average of each of the color planes to produce a three- 

dimensional vector. Computing an average for each color plane is the simplest technique, while 

methods 1 and 2 produce color histograms similar to those found in (9). The non-uniform method 

was included to ensure that color spaces composed of non-uniform data can be accurately compared. 

The derivation and implementation of each scheme is discussed in the following sections. 
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3.3.2.1 Uniform Quantization. The first method for creating feature vectors is based 

on uniform quantization. As described in section 2.3.4.2, a template for building a color histogram 

is formed by dividing the various color spaces into n bins per axis (n=20 in this research). Use of 

quantization to produce feature vectors of length n reduces the number of representable colors, but 

retains a discriminating factor otherwise lost through plane averaging. This discriminating factor is 

the ability to compare images based on whether similar colors are present. For example, although 

quantization may eliminate some shades of blue, at least one shade of blue will remain. The pixel 

count for that one shade of blue can be compared directly with other histograms to determine if 

another image with a comparable number of blue pixels exists. Plane averaging loses information 

concerning the total number of each color shade within an image. The discriminability afforded by 

uniform color histograms is a major reason for their extensive use in database retrieval. 

Two steps are needed to produce a uniform color histogram. First, the planes of each color 

space (for the whole database) are searched to find the minimum and maximum pixel intensity 

values. Next, these minimum and maximum values are used to define the bounds of each color 

plane. To quantize uniformly, the range of possible colors is divided by the number of desired colors 

(in this case 20). Essentially, the original color space is being quantized into a new space where 

each color plane now has only 20 different possible color shades (i.e. (bi,b2, ...,b2o))- A feature 

vector (color histogram) is obtained through the process described in section 2.3.3. The result is 

a collection of three color histograms for each image derived from the RGB, HSV, and Faugeras 

color spaces. 

3.3.2.2 Non-Uniform Quantization. Since pixel values in the Faugeras color space 

are nonuniformly distributed, a nonuniform quantization scheme is required to optimize similarity 

comparisons. Yet, as described in section 2.5.4, application of a nonuniform quantization algorithm 

to individual images results in feature vectors which can not be compared for similarity. Since each 

image has a different distribution of pixel color, a nonuniform quantization method produces bin 
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ranges that are not congruent. Because of the difficulty associated with implementing a nonuniform 

scheme to individual images, a technique similar to the one presented in (21) is employed. Instead 

of quantizing based on individual images, pixel values from the whole database are used in the Lloyd 

I algorithm. This allows for quantization based on the color distribution of the entire database. A 

histogram is then constructed for each image according to this scheme. 

In this research, the Matlab LLOYD I algorithm denned in the Communications Toolbox 

is used to optimize quantized color definitions. As input, this algorithm requires an initial code 

(codebook) and a data training set. The code is a vector whose length determines the amount of 

quantization. For example, if an axis with 256 color shades must be reduced to 20 color shades, 

then the codebook is an initial guess of what those 20 colors should be. Given the codebook, actual 

data points from the training set2 are used to define a color distribution and to find the optimal 

partition for the quantization cells. Using the training set, the code is iteratively refined until an 

allowable distortion level (between original pixel color and resulting pixel color) has been attained. 

When complete, the LLOYD I returns an optimal partition3 and codebook vector (list of 20 optimal 

colors). 

Quantization with this method is different from uniform quantization because an optimal 

approximation to the database's original pixel colors is performed. Once again, a color histogram 

is constructed by the method outlined in section 2.3.3. 

3.3.2.3 Plane Averages. The last method for creating feature vectors is to produce 

an average of all pixel values for each color plane and treat the resulting three numbers (one for 

each plane) as a vector that represents a three dimensional point in that color space. For database 

retrieval, use of plane averages is the most simplistic, computationally easy comparison that can 

be made for color images.   Unfortunately, this technique also diminishes discriminating power. 

2In this research, the training set is the collection of all pixel intensity values from the entire database 
3A set of 20 color ranges (containing the original 250 shades) that are to be reduced to an optimized color (one 

optimized color is defined for each range)) 
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Feature vector representation of an image must allow for discriminability between images. With 

the averaging technique, two images with completely different colors can produce similar average 

values for each of the three color planes. Because a comparison of color averages may rate two 

images with disparate colors as similar, more false positive matches are produced (more than the 

uniform or non-uniform methods). 

The process for generating this type of feature vector has only two steps. First, the values 

of all pixels for a given plane are summed and divided by the number of pixels contained in the 

image (Equations 3.2,3.3, and 3.4). Once this is completed for each of the three planes, the values 

are combined to form a vector with three positions. The example shows the creation of a feature 

vector for the RGB color space, but the same process is also applied to both the HSV and Faugeras 

color spaces. 

Ravg = 

Gavg = 

Bavg = 

Efl 
# pixels in image 

ZG 
# pixels in image 

EB 
# pixels in image 

(3.2) 

(3-3) 

(3.4) 

Ravg     Gavg     Bavg 

Figure 3.1    Vector produced for RGB color space by the Plane Averages method 

Feature vectors of the ten test images are now used in conjunction with a similarity metric 

to provide a third method for assessing color space performance. 

3.3.3 Similarity Comparison. Assessment of image similarity is based on the distance 

metrics defined in section 2.3.4.1. In particular, a Euclidean metric is used to evaluate the sim- 

ilarity of all resulting feature vectors. Matlab code that implements a Euclidean metric can be 

found in Appendix C. The Euclidean distance function applied in this research does not account 
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for perceptual similarity between adjacent bins. As described in section 2.3.4.1, accounting for 

similarity between adjacent bins is important for retrieval accuracy, but was not included in this 

research. 

The distances produced by the metric are scaled so that comparisons could be made between 

the various color spaces and the results obtained from the human experiment. To scale the results, 

the largest distance in each data set becomes the standard for images being completely dissimilar. 

The following method is applied to the results of the Euclidean metric to produce the final similarity 

output: 

1. find the max distance in the data set (10x10 matrix of dissimilarity values) 

2. divide all values of the data set by the value obtained by multiplying the max distance by 
10/9 - the resulting data values4 are between 0 and 0.9. 

3. since this implementation of the Euclidean metric measures dissimilarity, the entire data set 
is subtracted from one to produce a measure of similarity. The change is made because the 
results from the human experiment will be in terms of similarity instead of dissimilarity. 

4. finally, the data set is multiplied by 10 to scale the similarity values in accordance with the 
results obtained from the perceptual experiment. 

After choosing ten test images, each is compared against all other images in the database 

using the method defined above. Similarity results from the distance metrics are saved in a matrix 

format identical to Table 3.1. For each color space, separate matrices are produced for the three 

quantization schemes (i.e. uniform, nonuniform, plane averages). A total of nine similarity matrices 

are constructed. The matrix format reflects the comparisons that are performed on the 10 test 

images (actual images are in table D.l). For example, the value in row 1 column 1 is the similarity 

value that results from comparing image 1 to itself. The similarity values can range from 1 (low 

similarity) to 10 (identical). 

To complete an analysis of color space performance when judging similarity, data is needed 

from human subjects. The next section explains how the necessary data is collected. 

4Multiplying by 10/9ths ensures that, computer similarity values of 1-10 are the result of this scaling process (and 
not 0-10). A scale of 1 to 10 is desired because it corresponds to the similarity scale used in the human perceptual 
test 

3-7 



Table 3.1    Matrix format for storing similarity results 

10 3 2 9 3 4 9 3 2 7 
3 10 4 2 5 9 2 1 4 8 
5 2 10 4 4 7 9 3 5 3 
2 5 3 10 2 8 6 4 3 5 
2 2 5 4 10 2 2 4 7 9 
8 2 3 3 4 10 2 8 8 6 
9 6 4 4 6 8 10 3 4 3 
2 4 6 6 2 9 5 10 3 3 
5 6 2 3 8 4 7 4 10 2 
7 5 1 3 7 5 7 5 3 10 

3-4    Perceptual Experiment 

To evaluate the retrieval performance of the RGB, HSV, and Faugeras color space, a compar- 

ison mechanism is required. One way to measure retrieval accuracy is based on human evaluations 

of image color similarity. If an experiment is performed to collect human observations of color 

image similarity, the results can be used to evaluate the retrieval accuracy provided by different 

color spaces. The following sections describe the experiments involved in this process. 

3.4-1 Color Imagery Experiment. The test subjects involved in this experiment were a 

collection of 34 Masters and Doctoral students and 2 Faculty members from the Air Force Institute 

of Technology. The task was to evaluate a subset of the 50 images contained in a test database. As 

described in section 3.2, ten images were chosen as the test images. Each test image was compared 

against a random ordering of the complete set of 10 test images (table D.l). Subjects viewed the 

current test image and comparison image simultaneously. A response in the range of 1 to 10 was 

entered via keyboard and considered a measure of the two images' perceptual color similarity. A 

complete description of factors each subject was made aware of prior to testing can be found in 

figure 3.2. These instructions were presented to eacli subject at the beginning of the test. When 

complete, subjects had compared eacli of the images against every other image.   A total of one 
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hundred comparisons were performed. 

GOAL - Assess perceptual similarity between digital color images 

EVALUATION - The ranking of perceptual similarity will be provided with a number be- 
tween 1 and 10. On this scale, the rank of 1 corresponds to a high measure of dissimilarity 
while a rank of 10 requires the two images to be perceived as highly similar. 

CRITERIA - The determination of rank based on the above scale relies on a few important 
criteria: 

1. The only attribute for assessing similarity is color. If the two images have similar 
colors (in a global sense), they are considered possible matches. 

2. The images that are compared can contain completely different shapes and still be 
considered nearly identical (rankings close to 10). Similarity rankings should never be 
based on objects or shapes (for example, if both images contain an F-16). Yet two image 
with F-16s can be similar if their global color contents are comparable. 

An analogy to keep in mind is the construction of a puzzle. One normal action when 
constructing a puzzle is to group pieces with similar colors. This grouping, based on the 
human perception of color, can be considered a filter. Similar color pieces are more likely 
to connect. In this experiment, you are to respond in a similar manner. Consider yourself 
a preprocessing filter that is deciding (based on the rank you provide) which images should 
be kept for further analysis. 
Press any key to continue 

Figure 3.2    Instructions describing the experiment. 

3.4-2 Presentation of Data. For the test subjects to make similarity comparisons, the 

images to be compared were displayed on a computer monitor. To display multiple 24 bit images 

simultaneously, a Sun Sparc 20 with a 24-bit graphics card was utilized. On the monitor, a solid 

gray background (R=211, G=211, B=211) was maintained while two image windows and a Mat- 

lab window were open. Subjects were seated 18 inches from the monitor so that the image size 

parameter used in the Faugeras HVS was accurately represented. This parameter, which is based 

on distance from the monitor and image size, is derived from the following formula: 
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0 = 2ian-\d/D) (3.5) 

In equation 3.5, d is half the width of the displayed image, and D is the distance of the subject from 

the computer monitor (both in inches). The resulting angle 9 corresponds to the amount of visual 

angle consumed by an image with respect to the subject's eye. Filters utilized in the last stage of 

the Faugeras color HVS model depend on visual angle for their construction. In this experiment, 

the visual angle was set at 5.2 degrees. 

Elimination of human bias is an important consideration when performing perceptual ex- 

periments. During this experiment, several mechanisms were implemented. First, as previously 

described, procedural instructions were included to reduce bias and clarify the intent of the test. 

Second, a tutorial was presented after the instructions to anchor the range of possible similarity 

scores and reinforce the main points contained in the instructions. The images used in the tutorial 

can be found in Table D.2, Appendix D. Finally, as a result of preliminary testing on human 

subjects, image size was reduced from the original 256x256 pixels to 128x128 pixels. Since prelimi- 

nary subjects cited a preference in evaluating the similarity of color content in smaller images, the 

128x128 pixel images were used for comparison in the perceptual experiment and for evaluation by 

the color histogram algorithms. 

3.4-3    Experimental Procedure.      The experiment proceeded as follows: 

1. Instructions displayed; subjects asked if they have any questions 

2. Tutorial is run - three preliminary comparisons, identical to the types of comparisons made 
during the experiment, are used to illustrate high, low and medium color similarity between 
images. As described, the tutorial is meant to anchor the intent of the experiment to the 1-10 
scale utilized for subject feedback. 

3. Layout of experiment explained to each subject. A subject is then told how the images will 
be displayed, how many comparisons are being made, and when to enter their similarity 
response. 

4. Experiment begins - Test image and first comparison image displayed (randomly chosen from 
collection of 10 test images) 

3-10 



5. While the images are being displayed, the Matlab window is idle. After the comparison image 
has been displayed for three seconds, the image disappears and the test subject is prompted 
to enter their perceived similarity measure in the Matlab window. 

6. After confirmation of input, the next comparison image is displayed. This is repeated 10 
times for each test image. 

7. When all ten comparisons have been made, the test image is changed and the process is 
repeated. All ten test images are evaluated in the same manner. 

As a subject cycles through all test images, their responses were recorded in vectors and saved 

for further processing. 

3.4.4 Use of Resulting Data. Once all vectors had been collected, the results were com- 

bined statistically. Since 36 subjects provided similarity evaluations, a normal distribution was 

assumed5. For each test image, one vector was recorded per subject. Within each vector, the first 

value is the similarity measure between the current test image and the first test image, the second 

value is the similarity measure between the current test image and the second test image, and so 

on. There are ten test images, so each vector is of length ten. To calculate a mean value for each 

of the ten comparisons, the vectors resulting from the thirty-six human subjects were used. The 

Matlab MEAN function condensed the thirty-six vectors into a single vector which signifies the 

average similarity response of all subjects for a particular test image. This process was repeated 

for each of the ten test images. When complete, the ten resulting vectors were combined to create 

a 10x10 matrix similar to the matrix assembled in section 3.3.3. The mean value obtained for each 

similarity evaluation is used as a baseline for evaluating color space performance. Results obtained 

from the computer techniques described in section 3.3.2 can now be compared against the recorded 

similarity preferences of humans. 

3.5    Summary 

This chapter describes both a method for generating computer based color similarity results, 

and an experiment for collecting color similarity results from human subjects.  The experimental 

-"usually 30 samples are enough to assume a normal distribution (31) 
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results were collected in order to verify the potential of the Faugeras color space for improving 

retrieval accuracy when using color histogram intersection. The next chapter presents the data 

that was collected and offers some analysis of the Faugeras color space's performance. 
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IV.   Results 

4-1    Introduction 

This chapter presents the outcomes from the color histogram comparisons and human exper- 

iment described in Chapter III. First, the human perceptual experiment is analyzed to determine 

if any bias may have skewed the results and to provide a statistical look at the reliability of the 

data. The remainder of the chapter presents the results obtained for each color space. The results 

are subdivided into three sections based on the plane averages, uniform and non-uniform feature 

vector techniques described in chapter 3. 

4-2    Analysis of Results from Perceptual Experiment 

As described in chapter III, a mean similarity score for each image pairing was calculated. 

The 10x10 matrix represented by Table A.l contains all similarity results for the ten test images. 

The value in position r,,j, where r is the 10x10 matrix, signifies the similarity value that resulted 

from human subjects comparing image i to image j. 

Because 36 subjects were sampled, the distribution of responses was assumed to be normal(31). 

Using this assumption, a method described in (31) is employed to determine the confidence with 

which the population mean \i is within a given distance of the sample mean x. The method is 

based on the sample mean x, sample standard deviation s, and sample size n of the experimental 

results (Equation 4.1). The purpose for using this technique is to gain statistical validation for 

the reliability of the data collected. The statistics show whether the mean values of the human 

similarity matrix would be expected to remain stable if further random samples are taken. 

X — LI 

s/y/n 

A confidence interval for the population mean is defined in equation 4.2. 
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s s 
(x-za/2(—),x + za/2(—=)) (4.2) 

In this case, a z value was determined for each entry in the human perceptual matrix by applying 

equation 4.2 and setting the bounds of the confidence interval to a distance of ±0.5 (distances 

relative to 1-10 scale used during experiment). A distance of 0.5 was chosen because such a change 

would not have a significant effect on correlation with the computer results. For this reason, this 

distance represents an acceptable level of change. 

0.5 = za/2(^) 

Since the sample standard deviation s and sample size n are known, z can be derived. This value 

of z determines the proportion of future samples (including the current sample) that will contain 

the true mean, /x, within a distance of ±0.5 of the sample mean. This technique was employed for 

all 100 mean value entries in the human perceptual matrix. The table of resulting z values is found 

in Table A.2. The lowest confidence for a population mean not lying within the interval for the 

current and future samples was the comparison of image 7 to image 8. The computed z value of 

1.40 corresponds to 83.8% confidence that this is a sample which contains the real mean ß within 

a distance of ±0.5 from the sample mean, x. 

Although there is relatively high confidence that subsequent samples will produce a similar 

human results matrix, a few of the comparisons did exhibit high variances. Some possible reasons 

for these high variances include bias due to the contents of the images used, the learning curve of 

the human subjects and testing official, and human subject misinterpretation of the experiment 

instructions. The next few sections examine each of these possiblities. 

4.2.1 Bias Due to Content of Images. As mentioned in Chapter III, the 10 test images 

were chosen based on their variations in color content. In contrast, the color of images used in 

the tutorial to anchor the similarity scale were dominated by several hues of blue (see table D.2). 

4-2 



Baselining the experiment with an image whose dominant color was blue may have introduced bias 

into the interpretation of the similarity scale. Table A.3 shows that the variance for comparisons 

between both images 1 and 2 (columns 1 and 2) and the rest of the data set are relatively low. 

Figure 4.1 is included to show the predominance of blue in the two test images. 

Test Image 1 Test Image 2 

Figure 4.1    Test Images Dominated by Blue 

Data present in the table of comparison variances (Table A.3) may also illustrate how the 

tutorial example of low similarity has affected the similarity scores. The example of dissimilarity 

presented in the tutorial compares an image of a plane in a bluish background to a group of planes 

in the early night sky (some reds and yellows which are dominated by black). This example is very 

similar to the comparison made between images 1 and 10 in the experiment (Figure 4.2). 

As expected, Table A.3 shows low variability for the comparison between test images 1 and 

10. When comparing image 10 to image 1, subjects consistently chose a similarity value of 1 or 2. 

In contrast, comparisons using images 3, 7, and 8 (columns 3,7 and 8 or table A.3) all had high 

variances. In addition to their color contents differing from those used in the tutorial, the many 

shades of yellows, browns, and greens of images 3, 7, and 8 do not allow for the sensation of one 

overpowering global color (images found in table D.l). Without one underlying global color, the 

high variances suggest that similarity comparisons become much more difficult. 

Alternately, a completely different source of bias could also have been the cause for high 

variances involving images 3, 7, and 8. The comparisons involving images of different brightness 
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Tutorial Test Image       Example of Dissimilarity 

Test Image 1 Test Image 10 

Figure 4.2    Example of Possible Bias Based on Images used in Tutorial 
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levels (image 8 vs. images 4,5,6 and 7) suggests that there was difficulty in deciding similarities 

between images of varying brightness. In fact, it seems that if there is either no overpowering 

image color present or if no similar color shades are contained in an image, brightness levels are 

a secondary mechanism for assessing similarity. The results suggest that humans vary greatly in 

their interpretation of similarity based on brightness. Some subjects may have emphasized color 

content more than brightness, and others may have done just the opposite. 

An additional cause of the variance (and related to the previous example) exhibited by images 

3, 7, and 8 may have resulted from human interpretation of similarity between two different color 

hues. For example, how similar is green to blue? Such comparisons could produce a high amount of 

variablity since the subjects were not provided with a method for deciding the similarity of different 

colors. 

4-2.2 Bias Caused by Misinterpretation of Instructions. Another possible source of bias is 

instruction misinterpretation. The intent of the experiment may not have been conveyed in the in- 

structions and tutorial. Since the experimental task was not an action that is consciously performed 

each day, individuals may have interpreted the instructions differently. The person administering 

the experiment could only explain misunderstandings presented to them by the subject. In addi- 

tion, there was a learning curve involved with preparing each subject to perform the experiment. 

A few trials were needed before the presentation of instructions, tutorial, and an explanation of the 

experimental procedure were standardized. 

Once the experiment had begun, each subject discovered a unique way for converting an 

internal similarity measure to a 1-10 evaluation. After two or three tests, people felt they could 

respond much quicker and had a better mental picture of what similarity ranking to assign to a pair 

of images. Unfortunately, since the order of image presentation was random for each subject, the 

actual affects could not be analyzed. An interesting idea for further study would be to determine 

if the variance for a comparison where image i is the test image and image j is the comparison 
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image differs drastically from the opposite situation (image j is the test image while image i is the 

comparison image). 

4-2.3 Other Possible Biases. A number of other biases may have affected the results. 

First, although no subject complained of boredom or fatigue, 100 comparisons may have affected 

a subjects desire to provide unbiased answers. Second, comments were made by several subjects 

expressing their discouragement with the time (3 seconds) that comparison images were displayed. 

Since each response was a subject's initial feeling of image similarity (analysis of image color was 

not desired), many subjects believed that 3 seconds was too long to view the pair of images. 

Next, some subjects did not maintain the 18 inch viewing distance (some leaned forward, 

others assumed a reclined position). Since the measurement of visual angle is based on a viewing 

distance of 18 inches, and the contrast sensitivity filter (CSF) depends on this value, correlation 

with the Faugeras results may have been biased. 

Finally, as mentioned in Chapter III, image size was reduced to 128x128 pixels because of 

a noted preference for making similarity comparisons. Image size may still have played a role in 

biasing responses. Since only one image size was used, a comparison could not be made to determine 

if changing the size increased or decreased the variability of subject responses. 

4.2.4 Summary. Because human subjects were involved, bias was a concern that the 

experimental setup in Chapter III attempted to minimize. In spite of these attempts, some of the 

results still contain high variability. Various explanations have been presented to explain deviant 

data. The variance in responses seemed to be affected most by the images selected to anchor the 

similarity scale. Further improvements can be made to future implementations of the experiment 

(and therefore increased confidence in the results) by incorporating changes based on comments 

from each of the previous sections. 
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4-3    Correlation Results for Computer Histogram Intersection 

4-3.1 Pearson Correlation. To measure the relationship between image color similarities 

observed and recorded by humans and the similarities derived from the various color histogram 

techniques, Pearson r values are calculated in sections 4.3.2-4.3.4. An r value describes the degree 

of linear relationship between two sets of data. In this case, the two sets of data were the mean 

values gathered from the human experiment and the individual color space similarity matrices 

produced from the comparison of color feature vectors. Pearson r values can range from -1 to 

1 with -1 representing a perfect inverse linear relationship, +1 representing a perfect positive 

linear relationship, and 0 representing no linear relationship between the data sets. The Pearson 

Correlation function found in Microsoft's Excel was used to generate the r values contained in the 

current chapter. 

To determine if the difference between r values is significant (i.e. the correlation shows that 

one color space performs better than another), a confidence for the difference between correlations 

was constructed. The method is derived from an example found in (32). To illustrate differences 

in color space performance, the process has been carried out on selected pairs of r values in each of 

the following sections. Each interval shows the confidence with which an r value can be considered 

significantly different from another. As previously stated, the sole purpose of the process is to 

confirm whether or not certain color spaces perform better when used as a piece of color histogram- 

based image retrieval. 

4-3.2 Plane Average Results. This section describes the results obtained by implementing 

the Plane Averages technique described in section 3.3.2.3 on each of the four color spaces. As 

noted in chapter 3, a 10x10 matrix of similarity comparisons was the result for each color space. 

Figures A.l and A.2 in Appendix A contain the similarity matrices obtained for each of the color 

space representations of the images. Application of the Pearson Correlation resulted in the r values 

shown in Table 4.1. 
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Table 4.1    Pearson r Values for Plane Averages Method 

RGB HSV FAUGERAS WITHOUT CSF FAUGERAS WITH CSF 
Human Results .722 .7788 .739 .736 

As described in section 3.3.2.3, finding a space that improves accuracy for the plane average 

technique is very desirable. Unfortunately, taking a plane average will always suffer from discrim- 

inability problems since images with completely different color content can be judged as similar. 

The confidence levels shown in Table 4.2 suggest no significant difference in r values. In fact, there 

is only about 60% confidence that the HSV and RGB r values are different. 

Table 4.2    Confidence that there is a Difference Between RGB and HSV r Values 

Confidence Level 90% 80% 70% 60% 50% 
Distance between r values -.099 -.047 -.0112 .0158 .0398 

From these results, it appears that the choice of color space does not seem to affect the 

retrieval accuracy of similar images. The Faugeras spaces perform on a level comparable to both 

HSV and RGB. As noted above, the entries in Table 4.2 resulted from considering the r values 

obtained for the RGB and HSV color spaces. These r values were chosen as an example because 

the distance between them was greatest thereby giving the best chance for a significant difference 

to be found. 

The similarity matrices in figures A.l and A.2 show that each color space's results overpredict 

the amount of similarity between images with respect to the human responses. This overprediction 

is caused by two factors: 

1) Averaging allows images with different colors to still be similar. Since plane averaging does 

not maintain a count for individual colors, the similarity result may not be based on images which 

are composed of high numbers of the same color pixels. Therefore, a high similarity mark can be 

produced that does not reflect how a human observer would respond. 
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2) The images do not have a majority of pixels with hues that widely differ from image 

to image. For example, there are not many pictures with R, G and B values all close to zero. 

Therefore, when averaged, the vector distance between most images is small. Only images with a 

large difference in their pixel intensity values with respect to another image can produce averages 

which are great distances from other vectors. This can be seen best by observing the similarity 

between images 1-9 and image 10 in each color space (figures A.1-A.2). Image 10, which has a 

high number of deep red and orange pixels, is a large distance from the other plane average feature 

vectors and therefore receives a low similarity mark. This conclusion can be verified perceptually 

by observing the complete collection of test images in Appendix D. 

As described in section 3.3.2.3, an average eliminates the possibility of comparing images 

based on the presence of particular colors. Further sections show that this may be a mistake when 

retrieval performance is based on how humans evaluate image similarity. 

4-3.3 Uniform Feature Vector Results. The results for the uniform technique described 

in section 3.3.2.1 are shown in Figures A.3 and A.4. Once again, Pearson r values are obtained 

to determine the correlation between color space representation and human perception. Table 4.3 

contains the r values calculated for each color space. 

Table 4.3    Pearson r Values for Uniform Method 

RGB HSV FAUGERAS WITHOUT CSF FAUGERAS WITH CSF 
Human Results .755 .91 .89 .725 

An initial look at the r values in table 4.3 indicates superior performance for the HSV and 

Faugeras (without CSF)1 color spaces. To help provide assurance that the difference between the 

RGB and Faugeras (without CSF) r values is significant, a confidence interval for their difference 

was constructed. The results in table 4.4 show 99.5% confidence that the Faugeras (without CSF) 

1 CSF stands for contrast, sensitivity function - refer back to section 3.3.1 for the definition of the Faugeras (with 
CSF) and Faugeras (without CSF) color spaces. A description of the CSF can be found in section 2.5.3 
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space correlates better with human results than the RGB color space. A similar analysis of the 

HSV and Faugeras (with CSF) was not needed since the distance between these r values was even 

greater than the distance used to generate the results in table 4.4. 

Table 4.4     Confidence That There is a Distance Between RGB and Faugeras (without CSF) r 
Values (and therefore differences in performance) 

Confidence Level 99.9% 99.5% 99% 95% 90% 
Distance between r values -.0301 .0398 .07213 .1605 .2049 

The only recognizable difference in color representation between the test spaces is that both 

HSV and Faugeras are defined in terms of hue, saturation and value. The HSV space is defined 

directly by these concepts of human perception while the Faugeras space's axes can be used in 

conjunction to derive the same attributes. In contrast, as described in section 2.3.4.3, the RGB 

space is not derived from human color vision characteristics. In fact, the correlation value in 

table 4.3 supports the stance that RGB is not the best color space for judging similarity. The 

improvement of performance for color spaces separated into hue, value and saturation has been 

noted in other articles(21). The use of such spaces in this research seems to be the most plausable 

explanation for improvements in correlation. These results suggest further support for the use of 

color spaces derived from human perception when judging similarity. 

The Faugeras color space (with CSF) produced the most unexpected results. The modeling 

of human contrast sensitivity by the CSF stage was expected to improve correlation. Instead, 

judgements made in this color space were no better than those made using RGB. Since the pixel 

values of the Faugeras (with CSF) space are distributed nonuniformly, it was thought that a uniform 

feature vector may have reduced performance. The unfavorable results of section 4.3.4 show that 

this hypothesis was false. 

Another important observation is that the uniform method for feature vector production 

provides much better correlation with the human data than the plane averages method. Since the 
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uniform technique compares images color by color (albeit from a reduced color set), two images 

with a lot of blue will receive high marks for the similarity between them. The high correlations 

obtained from experimentation may suggest that humans make their similarity estimate based on 

a select few colors contained in each image. The wide variances (discussed in section 4.2.1) for 

images that lacked dominant colors also supports this stance. 

4.3.4 Non- Uniform Feature Vector Results. Section 3.3.2.2 presents a method for accurate 

comparison of non-uniformly distributed color spaces. The Euclidean distances computed for this 

methodology are shown in Figures A.5 and A.6. Pearson r values (see table 4.5) are again calculated 

to determine the correlation between the data in Figures A.5 and A.6 and Table A.l. 

Table 4.5    Pearson r Values for Non-Uniform Method 

RGB HSV FAUGERAS WITHOUT CSF FAUGERAS WITH CSF 
Human Results .755 .90 .88 .68 

As described in section 3.3.2.2, a non-uniform scheme was needed to optimize similarity 

comparisons (because of non-uniform pixel intensity distributions for the Faugeras (with CSF) 

color space). With a uniform scheme, most color information was clustered in the three or four 

bins situated around the pixel intensity value of zero in the Faugeras (with CSF) color space. A 

non-uniform scheme distributes the information allowing for better discriminability (and therefore 

better similarity comparisons). 

The results of implementing this method are identical to those of the uniform scheme. Al- 

though the r values in Table 4.5 are smaller than those in Table 4.3, statistically the differences 

are insignificant. Since a non-uniform method should have increased correlation and didn't, the 

amount of overhead required to implement non-uniform quantization is not justified by the absence 

of performance gains in the results. 
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Two major components of the nonuniform technique may have produced the undesired out- 

come. First, only 20 bins were used for similarity testing. This may not have been enough bins 

to realize a performance gain. The pixel intensity distributions for the Faugeras (with CSF) color 

space are highly similar for each image. The small number of bins might not have provided the 

discriminabiilty power necessary to produce accurate similarity evaluations. 

Second, the non-uniform template was constructed based on the distribution of pixel inten- 

sity values from the database of 50 images. Although this technique was presented in (21), no 

performance results were offered in that paper. Applying an overall template to individual images 

may not be a plausible solution. The results gathered in this research support that conclusion. 

4-4    Summary 

This chapter presents the results obtained from comparing the human perceptual test with 

similarity results derived from three types of computer generated feature vectors. The feature vec- 

tor results are correlated with the human test results to evaluate the retrieval accuracy provided by 

the Faugeras color space. The resulting correlation measures suggest that the HSV and Faugeras 

(without CSF) perform best (they most closely mimick how a human evaluates color image simi- 

larity). The original Faugeras space, which incorporates the use of CSF filters, performs on a level 

comparable to the RGB space. This is an unexpected result which is discussed further in chapter 

five. 
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V.   Conclusions 

Chapter V presents some conclusions based on observations noted in Chapter IV. Specifically, 

the performance of the Faugeras color space is discussed. The chapter closes with an overview of 

future research recommendations. 

5.1    Performance of the Faugeras Color Space 

The problem statement as presented in Chapter I is: 

Does the Faugeras color space, when used as a component of color histogramming, help provide 

better correlation with the human perception of color image similarity than the RGB and HSV color 

spaces? 

The next two sections describe whether better correlation was achieved, and present a number 

of interesting results obtained from the research. 

5.1.1 Faugeras Color Space (with CSF). As explained in section 3.3.1, two versions of 

the Faugeras color space were used in this research. This section describes the performance of the 

space for which the research was originally envisioned (the Faugeras (with CSF)). 

The most notable observation from the results of Chapter IV is how the use of CSF filters pro- 

duced such poor correlation between human similarity measures and the similarity values produced ' 

by the uniform color histograms. This was an unexpected result since the modeling of human con- 

trast sensitivity provides the Faugeras color space with another documented response of the human 

visual system. Yet, because the subjects in the human perceptual test were instructed to ignore 

image objects (and therefore edges), inclusion of the CSF (which emphasizes edges) was inappro- 

priate. Therefore, color models which ignore the effects of contrast should more closely mimick the 

process used by subjects (in the experiment) to evaluate image similarity. The poor performance 
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of the Faugeras (with CSF) color space and great performance of the Faugeras (without CSF) color 

space supports this conclusion. 

5.1.2 Faugeras Color Space (without CSF). The Faugeras (without CSF) color space 

was included in the research because of the high correlation values it produced during preliminary 

experimentation. The previous section describes why these values are much better than those 

produced for the Faugeras (without CSF) color space. Correlation results for this space were 

nearly as good as those obtained for the HSV space. As described in section 4.3.3, the only 

distinction between the HSV and Faugeras (without CSF) and the other color spaces was how they 

defined color in terms of properties such as hue, value, and saturation. Further research should 

be performed to determine if color spaces based on the same concepts as the HSV and Faugeras 

(without CSF) color spaces are best suited for evaluating color image similarity. 

5.2   Recommendations for Further Work 

As a result of this research, a number of areas should be explored further. First, during 

experimentation the length of each uniform color histogram was held constant (n=20). Varying 

the length of this vector may identify an optimal length for maximizing correlation. Knowledge of 

an optimal length can then be used when constructing a database retrieval system which utilizes 

color histogramming. 

Next, other color spaces could be evaluated. The CIE-Lab color space, which is based on 

physiological and psychophysical research, would be a good candidate for use as a new test space. 

In addition, the Munsell color space should be evaluated because of its similarity to the HSV 

space. This would provide further proof that color spaces based on perceptual concepts like hue 

and saturation are best for evaluation color image similarity. 

Also, the human experiment can be performed again based on the knowledge gained from 

the first implementation.  The images used for human evaluation could be chosen based on pre- 
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liminary similarity results obtained from applying the uniform color histogram technique on the 

entire database. This would eliminate the need for test images to be chosen by the administrator 

of the experiment (eliminates bias introduced by a person selecting images). The suggestions for 

eliminating bias in sections 4.2.1-4.2.3 also need to be implemented. The application of these simple 

techniques may reduce the variability of human responses and therefore provide a more accurate 

baseline for evaluating color space performance. 

Finally, although various color spaces have been compared based on their ability to provide 

accurate retrieval, the literature does not contain an example of performance measurement via 

similarity results produced by humans. Future work is needed to determine the effectiveness of 

the method described in this thesis for assessing color space performance with respect to database 

image retrieval. 

5.3    Summary 

The results produced in this research suggest that the Faugeras color space is a poor perceptual 

space for judging the similarity of images based on color. Oddly, removal of the CSF filter appears 

to yield large improvements in performance. Although this research provided an initial look into 

the performance of color spaces (for color histogram image retrieval), further work is necessary to 

support the resulting conclusions. 
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Appendix A.   Similarity Matrices 

Table A.l    Similarity Values Obtained from Human Perceptual Experiment. 

9.97 8.38 2.64 6.39 3.46 2.99 3.43 3.49 2.17 1.33 

8.38 9.97 2.85 6.67 3.22 2.89 2.97 2.85 2.11 1.61 

2.64 2.85 9.97 2.68 6.44 4.07 2.83 3.47 3.82 2.72 

6.39 6.67 2.68 9.97 3.60 3.65 4.42 4.53 1.99 1.67 

3.46 3.22 6.44 3.60 9.94 5.36 3.90 5.25 3.31 2.35 

2.99 2.89 4.07 3.65 5.36 9.92 7.11 5.25 2.04 1.60 

3.43 2.97 2.83 4.42 3.90 7.11 9.72 5.28 2.15 1.38 
3.49 2.85 3.47 4.53 5.25 5.25 5.28 9.97 3.75 1.94 
2.17 2.11 3.82 1.99 3.31 2.04 2.15 3.75 10.00 7.28 

1.33 1.61 2.72 1.67 2.35 1.60 1.38 1.94 7.28 9.83 

Table A.2    z Values Obtained for Human Perceptual Results. 

18.00 2.54 1.83 1.67 1.69 1.92 1.88 1.82 3.56 4.97 
2.77 18.00 1.86 2.49 1.80 2.27 2.44 2.06 3.48 3.32 
1.94 2.05 18.00 2.02 1.76 1.77 1.70 1.84 1.90 1.93 
1.80 1.97 2.31 18.00 1.92 1.61 1.42 1.50 3.03 3.41 
1.77 1.90 1.46 1.76 12.91 1.41 1.42 1.58 1.62 2.20 
2.15 1.91 1.56 1.70 1.61 8.14 1.83 1.46 3.73 3.60 
2.02 1.96 1.86 1.79 1.58 1.66 1.80 1.40 2.71 6.00 

1.75 2.19 1.63 1.71 1.53 1.58 1.40 18.00 1.53 2.55 

2.44 2.64 1.61 2.75 1.60 2.12 1.78 1.50 Inf 1.84 

3.89 2.93 1.76 2.60 1.72 2.64 3.18 2.05 1.74 3.00 

Table A.3    Measured Variances for Human Perceptual Results. 

0.02 1.39 2.67 3.20 3.12 2.42 2.53 2.70 0.70 0.36 

1.17 0.02 2.58 1.45 2.77 1.73 1.50 2.11 0.73 0.81 

2.37 2.13 0.02 2.19 2.87 2.84 3.11 2.65 2.49 2.41 
2.76 2.30 1.68 0.02 2.42 3.45 4.40 4.00 0.98 0.77 

2.84 2.48 4.21 2.88 0.05 4.47 4.42 3.57 3.41 1.85 

1.93 2.46 3.68 3.10 3.45 0.13 2.67 4.17 0.65 0.69 

2.18 2.33 2.60 2.78 3.57 3.25 2.77 4.56 1.22 0.25 

2.93 1.87 3.36 3.04 3.82 3.57 4.53 0.02 3.79 1.38 
1.50 1.28 3.45 1.18 3.50 2.00 2.81 3.97 0.00 2.65 

0.59 1.04 2.88 1.32 3.03 1.28 0.88 2.13 2.95 1.00 

A-l 



10.00 7.90 5.64 9.15 7.38 7.80 6.75 4.02 4.08 2.86 
7.90 10.00 6.45 7.45 6.48 6.30 4.67 1.93 2.18 1.50 
5.64 6.45 10.00 5.89 7.01 6.00 3.40 1.00 2.05 2.73 
9.15 7.45 5.89 10.00 8.00 8.34 6.97 4.39 4.72 3.68 
7.38 6.48 7.01 8.00 10.00 8.85 6.26 3.98 4.91 4.78 
7.80 6.30 6.00 8.34 8.85 10.00 7.36 4.91 5.50 4.67 
6.75 4.67 3.40 6.97 6.26 7.36 10.00 7.13 6.58 4.17 
4.02 1.93 1.00 4.39 3.98 4.91 7.13 10.00 7.77 4.49 
4.08 2.18 2.05 4.72 4.91 5.50 6.58 7.77 10.00 6.71 
2.86 1.50 2.73 3.68 4.78 4.67 4.17 4.49 6.71 10.00 

RGB 

10.00 8.85 5.12 9.01 6.51 6.88 7.93 5.63 4.81 2.04 
8.85 10.00 5.18 8.33 6.19 6.45 6.95 4.78 4.18 1.81 
5.12 5.18 10.00 5.53 8.15 7.67 5.68 5.27 6.28 2.77 
9.01 8.33 5.53 10.00 6.96 7.37 8.08 6.39 5.02 1.58 
6.51 6.19 8.15 6.96 10.00 9.49 7.48 6.78 7.28 3.06 
6.88 6.45 7.67 7.37 9.49 10.00 7.94 7.14 7.22 2.91 
7.93 6.95 5.68 8.08 7.48 7.94 10.00 7.14 6.61 2.89 
5.63 4.78 5.27 6.39 6.78 7.14 7.14 10.00 6.20 1.00 
4.81 4.18 6.28 5.02 7.28 7.22 6.61 6.20 10.00 4.47 
2.04 1.81 2.77 1.58 3.06 2.91 2.89 1.00 4.47 10.00 

HSV 

Figure A.l     Similarity Matrices for Plane Average Feature Vectors Produced from the RGB and 
HSV Spaces. 
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10.00 9.56 6.58 9.15 7.51 7.70 8.65 7.47 4.74 1.00 
9.56 10.00 6.76 8.93 7.54 7.70 8.36 7.18 4.68 1.02 
6.58 6.76 10.00 6.91 8.67 8.37 6.81 6.69 6.64 3.75 
9.15 8.93 6.91 10.00 7.99 8.05 8.78 8.18 5.51 1.71 
7.51 7.54 8.67 7.99 10.00 9.45 8.02 7.99 6.82 3.31 
7.70 7.70 8.37 8.05 9.45 10.00 8.37 7.99 6.41 2.89 
8.65 8.36 6.81 8.78 8.02 8.37 10.00 8.32 5.36 1.58 
7.47 7.18 6.69 8.18 7.99 7.99 8.32 10.00 6.65 2.73 
4.74 4.68 6.64 5.51 6.82 6.41 5.36 6.65 10.00 6.07 
1.00 1.02 3.75 1.71 3.31 2.89 1.58 2.73 6.07 10.00 

Faugeras without CSF 

10.00 9.53 6.63 9.12 7.60 7.83 8.69 7.44 4.72 1.00 
9.53 10.00 6.84 8.88 7.64 7.83 8.36 7.13 4.66 1.03 
6.63 6.84 10.00 6.94 8.62 8.29 6.71 6.55 6.48 3.64 
9.12 8.88 6.94 10.00 8.08 8.16 8.77 8.18 5.52 1.74 
7.60 7.64 8.62 8.08 10.00 9.42 7.96 7.89 6.71 3.22 
7.83 7.83 8.29 8.16 9.42 10.00 8.36 7.90 6.26 2.76 
8.69 8.36 6.71 8.77 7.96 8.36 10.00 8.23 5.24 1.46 
7.44 7.13 6.55 8.18 7.89 7.90 8.23 10.00 6.59 2.68 
4.72 4.66 6.48 5.52 6.71 6.26 5.24 6.59 10.00 6.07 
1.00 1.03 3.64 1.74 3.22 2.76 1.46 2.68 6.07 10.00 

Faugeras with CSF 

Figure A.2     Similarity Matrices for Plane Average Feature Vectors Produced from the RGB and 
HSV Spaces. 
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10.00 5.37 4.39 4.21 5.30 5.28 4.49 3.60 3.95 2.22 

5.37 10.00 3.22 4.05 2.83 3.27 1.00 1.11 2.26 1.42 

4.39 3.22 10.00 3.46 3.57 4.45 2.44 1.49 2.14 1.33 

4.21 4.05 3.46 10.00 5.37 5.20 3.85 3.69 5.03 4.79 

5.30 2.83 3.57 5.37 10.00 6.48 5.22 4.31 5.24 4.08 
5.28 3.27 4.45 5.20 6.48 10.00 6.05 3.64 5.11 3.46 
4.49 1.00 2.44 3.85 5.22 6.05 10.00 4.60 5.23 3.08 
3.60 1.11 1.49 3.69 4.31 3.64 4.60 10.00 6.11 3.60 
3.95 2.26 2.14 5.03 5.24 5.11 5.23 6.11 10.00 4.70 
2.22 1.42 1.33 4.79 4.08 3.46 3.08 3.60 4.70 10.00 

RGB 

10.00 7.65 3.08 5.79 4.24 4.51 5.30 2.70 3.39 1.11 
7.65 10.00 3.82 6.16 3.72 3.59 4.39 2.47 2.76 1.00 
3.08 3.82 10.00 3.23 5.65 4.98 3.79 4.16 3.30 1.27 
5.79 6.16 3.23 10.00 4.68 4.58 5.13 3.36 4.88 3.14 
4.24 3.72 5.65 4.68 10.00 6.07 6.35 5.59 4.79 2.69 
4.51 3.59 4.98 4.58 6.07 10.00 6.27 4.58 4.75 2.19 
5.30 4.39 3.79 5.13 6.35 6.27 10.00 5.26 4.89 2.11 
2.70 2.47 4.16 3.36 5.59 4.58 5.26 10.00 3.98 1.50 
3.39 2.76 3.30 4.88 4.79 4.75 4.89 3.98 10.00 5.84 
1.11 1.00 1.27 3.14 2.69 2.19 2.11 1.50 5.84 10.00 

HSV 

Figure A.3     Similarity Matrices for Uniform Feature Vectors Produced from the RGB and HSV 
Spaces. 
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10.00 7.58 1.07 5.76 3.38 3.50 4.55 2.63 2.71 2.34 

7.58 10.00 1.75 6.20 3.02 3.63 3.86 2.13 2.02 2.42 

1.07 1.75 10.00 3.06 4.85 5.61 2.01 3.89 3.63 1.22 

5.76 6.20 3.06 10.00 6.21 5.22 5.62 4.22 4.22 2.18 

3.38 3.02 4.85 6.21 10.00 6.86 5.05 4.91 5.67 2.13 

3.50 3.63 5.61 5.22 6.86 10.00 5.59 4.92 4.29 1.89 

4.55 3.86 2.01 5.62 5.05 5.59 10.00 4.55 4.54 1.00 

2.63 2.13 3.89 4.22 4.91 4.92 4.55 10.00 4.83 1.21 

2.71 2.02 3.63 4.22 5.67 4.29 4.54 4.83 10.00 4.29 

2.34 2.42 1.22 2.18 2.13 1.89 1.00 1.21 4.29 10.00 

Fat igeras w ithout C ;SF 

10.00 8.90 6.14 6.73 3.04 2.91 5.20 5.61 4.43 1.00 

8.90 10.00 5.90 6.78 3.20 3.03 4.87 5.22 4.95 1.10 

6.14 5.90 10.00 5.00 4.51 3.21 6.62 7.26 3.78 2.17 

6.73 6.78 5.00 10.00 6.21 5.68 5.08 6.86 5.29 3.65 

3.04 3.20 4.51 6.21 10.00 7.60 6.89 6.15 5.74 6.52 

2.91 3.03 3.21 5.68 7.60 10.00 5.92 4.44 6.37 6.29 

5.20 4.87 6.62 5.08 6.89 5.92 10.00 5.94 6.23 4.68 

5.61 5.22 7.26 6.86 6.15 4.44 5.94 10.00 4.37 3.94 

4.43 4.95 3.78 5.29 5.74 6.37 6.23 4.37 10.00 4.76 

1.00 1.10 2.17 3.65 6.52 6.29 4.68 3.94 4.76 10.00 

Faugeras with CSF 

Figure A.4     Similarity Matrices for Uniform Feature Vectors Produced from the Faugeras Spaces. 
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10.00 5.47 4.50 4.29 5.39 5.36 4.47 3.56 3.94 2.17 
5.47 10.00 3.34 4.06 2.83 3.29 1.00 1.02 2.22 1.42 
4.50 3.34 10.00 3.57 3.64 4.54 2.47 1.49 2.12 1.33 
4.29 4.06 3.57 10.00 5.31 5.26 3.87 3.65 4.98 4.91 
5.39 2.83 3.64 5.31 10.00 6.46 5.22 4.19 5.17 3.70 
5.36 3.29 4.54 5.26 6.46 10.00 6.06 3.54 5.04 3.38 
4.47 1.00 2.47 3.87 5.22 6.06 10.00 4.53 5.24 3.01 
3.56 1.02 1.49 3.65 4.19 3.54 4.53 10.00 6.01 3.39 
3.94 2.22 2.12 4.98 5.17 5.04 5.24 6.01 10.00 4.44 
2.17 1.42 1.33 4.91 3.70   1 3.38   1 3.01   1 3.39 4.44 10.00 

RGB 

10.00 7.43 3.12 5.48 4.33 4.43 5.31 2.38 3.24 1.00 
7.43 10.00 3.52 5.75 3.66 3.42 4.24 2.26 2.62 1.13 
3.12 3.52 10.00 2.97 5.40 4.74 3.75 3.92 2.95 1.23 
5.48 5.75 2.97 10.00 4.66 4.54 5.04 3.00 4.82 2.77 
4.33 3.66 5.40 4.66 10.00 6.01 6.28 5.65 4.55 2.41 
4.43 3.42 4.74 4.54 6.01 10.00 6.22 4.42 4.55 1.82 
5.31 4.24 3.75 5.04 6.28 6.22 10.00 5.06 4.71 1.96 
2.38 2.26 3.92 3.00 5.65 4.42 5.06 10.00 3.62 1.16 
3.24 2.62 2.95 4.82 4.55 4.55 4.71 3.62 10.00 5.46 
l.UU       1.13 1.23 2.77 2.41 1.82 1.96       1.16 5.46 10.00 

HSV 

Figure A.5     Similarity Matrices for Non-Uniform Feature Vectors Produced from the RGB and 
HSV Spaces. 
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Faugeras without CSF 

Faugeras with CSF 

Figure A.6 SjrfW* M8lr,ces fo, N„„-„„iform FeslUM Veclors ptoduced from fc Fanseras 
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Appendix B.   Experiment Matlab M-Files 
EXPERIMENT 

function experimentCsubjectnum) 
'/. 
*/. 
'/. 

instructions; 

tutorial; 

perceptMatrix(subjectnum); 

TUTORIAL 

function tutorial 
'/. 
'/. 

*/. 
'/. 

Idisplay -title A -geometry +420+80 IMAGES/HALFI/image5.tif \&; 
[testimagepid] = getpid(O.O); 

Idisplay -title B -geometry +555+80 IHAGES/HALFI/image43.tif \&; 
[pid] = getpidCl,testimagepid); 

fprintfC'Press space bar to continue\\n\\n\\n'); 
pause; 

eval(['Skill ' int2str(pid)]); 

Idisplay -title C -geometry +555+80 IMAGES/HALFI/image41.tif \&; 
[pid] = getpidCl,testimagepid); 

fprintfC'Press space bar to continue\\n\\n\\n'); 
pause; 

evalCC'Ikill ' int2strCpid)]); 

.'display -title D -geometry +555+80 IMAGES/HALFI/image31.tif \&; 

GETPID 

*/. 

*/. 

'/. 
'/. 

[pid] = getpidCl.testimagepid); 
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fprintf('Press space bar to continue\\n\\n\\n'); 
pause; 

eval(['Ikill ' int2str(pid)]); 

eval(['!kill ' int2str(testimagepid)] ); 

function [pid] = getpid(switch.origpid) 

if switch == 0 

!ps -a > output; 

Igrep display output > processes; 

fid = fopen('processes','r'); 
pid = fscanf(fid,"/.d'); 
fclose(fid); 

else 

!ps -a > output; 

Igrep display output > processes; 

eval(['Igrep -v ' int2str(origpid) ' processes > finallist']); 
fid = fopen('finallist','r'); 
pid = fscanf(fid,"/.d'); 

fclose(fid); 

end 

PERCEPTMATRIX 

function perceptMatrix(testsubj ect) 

'/. 
*/. 

'/. 

'/. 

fprintf('\\n\\n        This is the start of Test \#1 \\n\\n'); 
fprintf(' You will have 3 seconds to make a comparison \\n'); 

fprintf('     before the image on the right is removed and a\\n'); 

fprintfC similarity score must be entered. \\n\\n'); 
fprintf('Press any key to continue\\n\\n'); 
pause; 

flag=0; 

CONTROL = 1; 

testimageflag=0; 

x=clock; 

randnum = ceil(x(6)); 
randperm(randnum); 
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testimage = randperm(lO); 
for k = 1:10 

outvector = zeros(10,10); 

filename = C'IMAGES/EXP\_IMAGES/image' int2str(testimage(k)) '.tif']; 

eval(['!display -title Test\_' int2str(k) ' -geometry +420+80 ' filename ' \&']); 
[testimagepid] = getpid(O.O); 
compimage = randperm(lO); 

for i = 1:10 

'/.must randomize input to int2str 

filename = ['IMAGES/EXP\_IMAGES/image' int2str(compimage(i)) '.tif']; 

eval(['!display -title ' int2str(i) ' -geometry +555+80 ' filename ' \&']); 
Cpid] = getpidCl,testimagepid); 
pause(3); 

eval(['!kill ' int2str(pid)]); 

while (flag==0) 

simscore = input('Enter a similarity score from 1-10: '); 
fprintf('WnWn'); 

'/.check validity of inputted score 

if (simscore == 1) | (simscore ==2) | (simscore ==3) | (simscore ==4) I (simscore ==5) I (simso 

outvector(testimage(k),compimage(i))=simscore; 
flag=l; 

else 

fprintfCSimilarity score must be between 1 and 10, please enter score again.\\n\\n'); 
end 

end 

flag=0; 

'/.fprintf ('Press space bar to continue\\n\\n\\n'); 
'/.pause; 

end 

testimageflag = 1; 

eval(['!kill ' int2str(testimagepid)]); 

if k-=10 

output = ['\\n\\n        This is the start of Test ' int2str(k+l) ' \\n\\n']; 
fprintf(output); 

fprintf('Press any key to continue'); 
pause 

end 
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filename = [" 'TESTIHAGE\_' int2str(testimage(k)) >/subject\_' int2str(testsubject) '\_resultsJ 

eval(['save ' filename ' outvector']); 

clear outvector 

end 

SCRAMBLE128 

*/. 

*/. 

'/. 

'/. 

for j = 1:10 

infile = ['IMAGES/EXP\_IMAGES/image' int2str(j)]; 
[R,G,B] = tiffread(infile); 

x = randperm(16384); 

for i = 1:16384 

R(x(i))=R(i); 
G(x(i))=G(i); 

B(x(i))=B(i); 

end 

outfile = C'IMAGES/SCRAMBLED\_EXP/image' int2str(j) '.tif']; 
tiffwrite(R,G,B,outfile); 

end 
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Appendix C.   Color Histogram Matlab M-Files 
COLOR SPACE TRANSFORMATIONS 

RGB2AC1C2 

function [A,C1,C2,R,G,B] = rgb2aclc2(image,imgsize) 

[R.G.B] = tiffread(image); 
[R.G.B] = replacezero(R,G,B); 
[A.C1.C2] = colorhvs(R,G,B,imgsize); 

COLORHVS - FILTERED 

function [A1.B1.C1] = colorhvs(rl,gl,bl,imgsize) 

'/. 

I  S'S M  - lnPU! £eferenCe) image red' Sreen' ™*  blue planes 
X imgfize   I X\f ^  imaSe red' *ree*' -d "in. *•».- A imgsize   - size of image m degrees of visual angle 

% pA,pCl,pC2 = output visible difference maps for the A. Cl. and C2 planes 

'/. Author: Curtis E. Martin 
'/. Date:  17 Sep 96 

'/,  Should check sizes, etc 
CN,M]=size(rl); 

'/. Initialize variables 

sA = zeros(N*M,1); 
sB = zeros(N*M,1); 
sC = zeros(N*M,l); 

'/,  Set parameters: 
$W = 6;  '/, Daly, p. i96 
Q = 0.7; '/, Daly, p. i96 
kl = W-(-q/(i-Q)); x Daly,s equation 14 30 
k2 = W-(l/(l-Q)); y, Daly,s equation 14 30 
b = 4; '/. Daly, p. 197 

s = ^8; '/ Daly's varied from 0.7 to 1.0 
beta - 3.4; '/, based on plot, Daly, p. i98 

'/. Get HVS filters 
Ha = gethvs(N, imgsize, 1) 
Hcl = gethvs(N, imgsize, 2) 
Hc2 = gethvs(N, imgsize, 4) 
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«"'"™^™«,iMto FMseras coiot—<- "—> 
/. Compute Fourier transforms 
*A1 = fft2(Al)/(N-2); 
Bl = ttt2(Bl)/0r2); 
Cl = fft2(Cl)/(N-2);$ 

'/.  Now apply the CSF filters 
Al = Ha  .* Al; 
Bl = Hcl .* Bl! 
Cl = Hc2 .* Cl 

% Convert back to time domain 
Wl = real(ifft2(Al))*(if-2); 
Bl = real(ifft2(Bl))*(N-2);' 
Cl = real(ifft2(Cl))*(i-2),'$ 

GETHVS 

function H = gethvsCN.isize.plane) 

f vs ÄtsrÄ-"-^^---^.. 
X H = gethvs(N,isize,plane) u 

'[>  »    = number of pixels in im 
/. isize = si2e of image on screen, in decrees 
/.  plane = color plane CI=A 9-ri   ~,  ?egrfes yt y±<w.e  (.l-A, 2-C1, and 4=C2) 

'/• H    = bandpass modulation transfer function 

X The CSF filter that ' 

J ^orm given by „anno si Sakr^n ^S? * ^^^ ^  *»<*W 
•/•  vol. IT-20, no. 4, pp. 525-536  rf TTafSactl°™  °* Information Theory 
J 8 cycles/deg for ^fA component 4 "wf T *° ^ at ab°Ut 

'/. cycles/deg for the C2 component    Cy°les/deS for the Cl component, and 2 

fs = 1 / isize; 

ii = onesCl.i) * Ofloor(N/2) : floor((N-i)/2y,. 
JJ = C-*loor(I/2):fioar((I.1)/2)]l ,^„f?"\ 

C0L0RHVS2 - WONFILTERED 
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function [Al.Bl.Ci: = colorhvS2(rl,gl,bl) 

X 
I  «.«l.M  . UPM  („,„„„, iMag, red| ^ ^ biu> ^ 

% Author: Curtis E. Martin 
/. Date:   17 Sep 96 

X Should check sizes, etc.. 
tN,M]=size(rl); 

X Initialize variables 

sA = zeros(N*M,1); 
sB = zeros(N*M,1); 
sC = zeros(N*M,l); 

X Set parameters: 
w = 6;  •/, Daly, p. i96 
" = 0.7;  •/, Daly, p. 196 

b = 4; VDaly^p.' ^ * eqUatl°n ^ 

letl  -83 /' °f r8 Vari6d fr°m °"7 to 1-0 beta - 3.4; /, based on plot, Daly, p. 198 

RGB2FAUG 

■>■ F-g.nu,. color spaC8 ™iiGi!\Z'""' «™ =«!>««« of 
/•     G, B. *     av zo  tne RGB image m the matrices R 

X NEWMAP = RGB2FAUG(MAP) transforms the the M-bv-3 coT 
I.  the equivalent Faugeras colormap MAP.       y  C°lormaP MAP into 

X See also FAUG2RGB 

(((The matricp«! R r    D    ^ 
X     from 0 to 1 0f the red'     

intensities *» the range 

X intensity 0 corresponds to biaL" AiJft^" <°mp°neilts of the image.  The 
X corresponds to full intensity, m»)      lnt6nSlty ' 
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%  Curtis E. Martin 29 Aug 95 

if nargout == 2 | nargout > 3 
jrrorC'Wrong number of output arguments ,); 

if nargin==i, 
rgb = r'; 

a = zeros(size(r)); 

elseif nargin==2, 
eierror('Wrong nunber Qf   .^ ^^   >); 

if (ariy(size(r)*=sizerD-,n 1   ,   . 
«orOH. G. an'iSt al^^--(b))), 

end a11 be the same size.') 
rgb = [r(:).; g(:),; b(;V]; 
a - zeros(size(r)); 
cl = zeros(size(r)); 
c2 = zeros(size(r))- 

end 

'/. Define U and P here 
'/.  Ul: 

f.»V-W -684° ••"»»•».» .7« .,„, ..„ .0842 ,90M. 

temp = p * log(u t  rgb). 

if nargout == i, 
a = temp'; 

else 

a(0 = tempCl,:) 
cl(0 = temp(2,:) 
c2(:) = temp(3,:) 

end 

RGB2HSV2 

function [h.s.v] = rgb2hsv2(r,g,b) 
/Given: rgb each in [0 1] 

'/Desired: h in [0,360]'and s in To 11 
h = zeros (sizeOr.l)); ' 6XCept lf s=0. then h=UTOEFIWED. 
s = zeros(size(g,i)) 
v = zeros(size(b,l)) 

$n = size(r,l)-2;$ 
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for    i = l:a 

"«1 =n,ax([r(i) g(i)  „, 

VUJ = maxl; J'' 
«This i8 the iightness 

if maxl  "= o 

elSe
r., '    ^eXt Calcul^e saturation 

s(i)  = 0; 
end 

if s(i) == 0 

hd) = eps; 
Blse delt* = *axl-minl. 

if r(i) == maxl 

end 

elseif    ,.: (g(a)-b^i))/delta- 1SM/W == maxl                     * Resulting color is batB- 
,       h(i>  = 2 +  (b(i)-rfin/, , 1S b6tWeen y«U*d magenta> 

hW= - cra)-g(i))/delta; yResuit.           
risbetw -»«*-^> 

end 

***** 

DB-DIST 

Avect = [] ■ 
Clvect = [] . 
C2vect = Q . 

Afvect = Q. 

Clfvect = Q • 
C2fvect =Q ■ 

Rvect =Q; 
Gvect = [j . 

Bvect = Q; 

Hvect = Q• 
Svect = Q. 
Vvect = Q . 

for i = 1:50 

h^ = h(i)*60-  %C°nVert t0 deSree^ 
if hCi) < 0.0 ' 
W = h(i) + 360. 

end y-Make degrees h. 
end «grees be nonnegative> 
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infile = ['N0RMALIZED_DATA/ALL_IMAGES2/image' int2str(i)]• 
eval(['load ' infile]); 

Avect = [Avect; A(:)]; 

Clvect = [Clvect; Cl(:)]; 

C2vect = [C2vect; C2(:)]; 

Afvect = [Afvect; Af(:)] 

Clfvect = [Clfvect; Clf( 
C2fvect = [C2fvect; C2f( 

Rvect = [Rvect; R(:)] 

Gvect = [Gvect; G(:)] 

Bvect = [Bvect; B(:)] 

Hvect = [Hvect; H(:)] 

Svect = [Svect; S(:)] 

Vvect = [Vvect; V(:)] 

end 

Amin = min(Avect); 
Amax"= max(Avect); 

Clmin = min(Clvect) 

Clmax = max(Clvect) 
C2min = min(C2vect) 

C2max = max(C2vect) 

Afmin = min(Afvect); 
Afmax = max(Afvect); 

Clfmin = min(Clfvect) 

Climax = max(Clfvect) 
C2fmin = min(C2fvect) 

C2fmax = max(C2fvect) 

Rmin = min(Rvect); 

Rmax = max(Rvect) 

Gmin = min(Gvect) 

Gmax = max(Gvect) 
Bmin = min(Bvect), 

Bmax = max(Bvect); 

Hmin = min(Hvect) 

Hmax = max(Hvect) 
Smin = min(Svect) 
Smax = max(Svect) 

Vmin = min(Vvect) 

Vmax = max(Vvect) 
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save 'UNIF0RM_HIST0GRAMS/db_min_maX2' Amin AmaX Clmin Clmax C2min C2max Afmin Afmax Clfmin Clfm.x 

LLOYDTESTAUF 

Af vect = [] ; 

load 'UNIF0RH_HIST0GRAMS/db_min_maX2'; 
step = (AfmaX-Afmin)/19; 

code = Afmin:step:AfmaX; 

for i = 1:50 

filename = ['N0RMALIZED_DATA/ALL_IMAGES2/image' int2str(i)]• 
evaKC'load ' filename]); ' 
NewAfvect = Af(l:16384); 

Afvect = [Afvect NewAfvect]; 
end 

[Partition.Codebook.Distortion] = lloyds(Afvect.code,.001)• 
save Afoptimization Partition Codebook Distortion 

PLANEFV1.N 

variables = [> Aavg Clavg C2avg Afavg Clfavg C2favg Ravg Gavg Bavg Havg Savg Vavg']; 

for j = l:io 

filename = ['N0RMALIZED_DATA/EXP_IMAGES_2/image> int2str(i)]• 
eval(['load ' filename]); J  ' 

numpixels = (size(A,1))"2; 

Aavg = (sum(A(:))/numpixels); 

Clavg = (sunt(Cl(:))/numpiXels); 
C2avg = (sum(C2(:))/numpiXels); 

Afavg = (sum(Af(:))/numpiXels); 

Clfavg = (sum(Clf(:))/numpixels); 

C2faVg = (sum(C2f(:))/numpixels); 

Ravg = sum(R(:))/numpiXels; 

Gavg = sum(G(:))/numpiXels; 

Bavg = sum(B(:))/numpiXels; 

Havg = sum(H(:))/numpixels; 
Savg = sum(S(:))/numpiXels; 
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Vavg = Sumcv(:))/Illlnp.xeis; 

°««le variables]);Se' int2s^(j)]; 

end 

MIF0RM\_FV2 

for i = 1:10 

2 MStAf MstClf h-tC2f nistR hisÄ- 1StR *M*istB histH h 

C0WVERT\_IMAGES2 

action Dii8tA.M8tcl hi8 

'/•    Calculate unifn™ i, • 

P      (C2max-C2min)/20; 

««•P =  (Afmax-Afmin)/20. 

P      tC2fmax-C2fmin)/20; 

f*ep = ^ax-Rmin)/20. 
Bstep =  CBn.aX-Bmin)/20: 

J-t-P = (Hmax-Hmin)/20 
«tep = (Smax-Sniin)/20 
Vst*P =  CVmax-Vmin)/20)- 

Dins - Clmin.-Clstep.-cimav. 

AfbinS = Afmin--«Step:Afniax. 
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S ~ C2fmin:C2fstep:C2fI„ax; 

Rbins = Rnun:Rstep:Rmax 
Gbms = Gmin:Gstep:Gmax 
Bbins = Bmin:BStep:Bmax 

»bins = Hmin:Hstep:Hmax 
Sb"S = Smin:Sstep:Sniax 
Vblns = V^:Vstep:Vniax 

histA = 
histCl : 
histC2 = 
histAf = 
histClf 
histC2f 
histR = 
histG = 
histB = 
histH = 
histS = 
histv = 

zeros(1 
= zeros( 
= zeros( 
= zeros( 
= zeros 
= zeros 
zeros(1 
zeros(1 
zeros(1 
zeros(1 
zeros(1 
zeros(l 

,20); 
1,20) 
1,20) 
1,20) 
(1,20); 
(1,20); 
,20) 
,20) 
,20) 
,20) 
,20) 
,20) 

f0Ji= l:(sizeU,i))-2 
for j = 1:20 

end 

end 

histCSCjV^h^Cj)^118^^ &  ( C2(1) < C2bins(j+1))) 
end 

end 

w-tciflj"";^^1^-«» * ( cif(i) < cifbins(j+1))) 
end ' 

w-tcalj"^^^»-^)) . ( cwci) < c2fbins(j+1))) 
end 

end 

histG(;j f M3tGa)!';ns(j)) & (G(i> < Gbm.(j+1))) 
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end 

„• „M  ((B(i) >= Bbins^)) * ( B(i) < BbinsCj+1))) 
histB(j) = histB(j)+l; 

end 

i,- «/f ((H(i) >= HMns(J^ &  C H(i) < Hbins(j + l))) 
histH(j) = histH(j)+l; J 

end 

*.■  «r^ ((S(i) >= Sbins(J)) * C S(i) < Sbins(j + 1))) histS(j) = histS(j)+i; 
J 

end 

>,■ «.„^ ((V(1) >= Vbins(J» * ( V(i) < Vbins(j+1))) histV(j) = histV(j)+i; J 

end 
end 

end 

EVAL\_SIM\_AVG2 

for i = i:io 

i"u^L?K™neT"raiF0R"/EXP1/1-«8-'in,2s,r(iU ■• 
Aavgl=histA; 
Clavgl=histCl; 
C2avgl=histC2; 
Afavgl=histAf; 
Clfavgl=histClf; 
C2favgl=histC2f; 
Ravgl=histR; 
Gavgl=histG 
Bavgl=histB 
Havgl=histH 
Savgl=histS 
Vavgl=histV 

for j = i:io 

fr8Mi»,hS»dl«„cl^i5t,„lc2Hlst:. mclii^im^sl Gavgi 3avgiiHavgi savgiiVavg]^ 

outputraatrix(i,j,i) = rgbdist; 

outputmatriX(i,j,2) = hsvdist; 
outputmatrix(i,j,3) = aclc2dist; 
outputmatrix(i,j,4) = aclc2fdist; 
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end 

end 

temp = max(max(outputmatrix(:,:,1))); 

outputmatrix(:,:,l) = 10*(l-(outputmatrix(:,:,l)/((10/9)*temp))); 
temp = max(max(outputmatrix(:,:,2))); 

outputmatrix(:,:,2) = 10*(i-(outputmatrix(:,:,2)/((10/9)*temp))); 
temp = max(max(outputmatrix(:,:,3))); 

outputmatrix(:,:,3) = 10*(l-(outputmatrix(:,:,3)/((10/9)*temp))); 
temp = max(max(outputmatrix(:,:,4))); 

outputmatrix(:,:,4) = 10*(i-(outputmatrix(:,:,4)/((10/9)*temp))); 

outfile =   ['SIM.MEASURES/nonunijiorm']; 
eval(['save  '   outfile  '  outputmatrix']); 

EUCLIDEAN\_SIM 

function Crgb_siml)hsv_siml,faug_siml>faug_sim2] = euclidean_sim(histR_l,histG_l,histB_l,histH_l, 

r_diff=(histR_l-histR_2).'2 
g_diff=(histG_l-histG_2)."2 
b_diff=(histB_l-histB_2)."2 

rgb_siml = sum(sqrt(r_diff+g_diff+b_diff)); 

H_diff=(histH_l-histH_2).~2 
S_diff=(histS_l-histS_2).*2 
V_diff=(histV_l-histV_2)."2 

hsv_siml= sum(sqrt(H_diff+S_diff+V_diff)); 

A_diff=(histA_l-histA_2).~2; 
Cl_diff=(histCl_l-histCl_2). "2; 
C2_diff=(histC2_l-histC2_2)."2; 

faug_siml= sum(sqrt((A_diff)+(Cl_diff)+(C2_diff))); 

Af_diff=(histAf_l-histAf_2)."2; 

Clf_diff=(histClf_l-histClf_2).-2; 

C2f_diff=(histC2f_l-histC2f_2).-2; 

faug_sim2= sum(sqrt((Af_diff)+(Clf_diff)+(C2f_diff))); 
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Appendix D.   Test Images 

Table D.l    Ten Test Images Used for Experiments 

Image 1 Image 2 Image 3 Image 4 

Image 5 Image 6 Image 7 Image 8 

Image 9 Image 10 
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Table D.2    Images Used for Tutorial 

few 

Tutorial Test Image 

HH 
Example of Similarity     Example of Dissimilarity    Example of Medium Similarity 
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